ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "56539d12-e511-422f-aad3-39a7c7d3525b"}, "_deposit": {"id": "2000783", "owners": [1], "pid": {"revision_id": 0, "type": "depid", "value": "2000783"}, "status": "published"}, "_oai": {"id": "oai:u-ryukyu.repo.nii.ac.jp:02000783", "sets": ["1642838338003", "1642838406845"]}, "author_link": [], "item_1617186331708": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "\u30cb\u30e5\u30fc\u30e9\u30eb\u30cd\u30c3\u30c8\u30ef\u30fc\u30af\u306b\u3088\u308b\u5207\u524a\u5de5\u5177\u6469\u8017\u72b6\u614b\u306e\u63a8\u5b9a", "subitem_1551255648112": "ja"}, {"subitem_1551255647225": "Estimation of the Condition of Cutting Tool Wear Using Neural Network", "subitem_1551255648112": "en"}]}, "item_1617186419668": {"attribute_name": "Creator", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "\u5c71\u672c, \u54f2\u5f66", "creatorNameLang": "ja"}]}, {"creatorNames": [{"creatorName": "\u91d1\u57ce, \u5bdb", "creatorNameLang": "ja"}]}, {"creatorNames": [{"creatorName": "\u798f\u672c, \u529f", "creatorNameLang": "ja"}]}, {"creatorNames": [{"creatorName": "\u5927\u677e, \u7e41", "creatorNameLang": "ja"}]}, {"creatorNames": [{"creatorName": "Yamamoto, Tetsuhiko", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Kinjo, Hiroshi", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Fukumoto, Isao", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Omatu, Sigeru", "creatorNameLang": "en"}]}]}, "item_1617186476635": {"attribute_name": "Access Rights", "attribute_value_mlt": [{"subitem_1522299639480": "open access", "subitem_1600958577026": "http://purl.org/coar/access_right/c_abf2"}]}, "item_1617186499011": {"attribute_name": "Rights", "attribute_value_mlt": [{"subitem_1522650717957": "ja", "subitem_1522651041219": "Copyright (c) 1992 \u65e5\u672c\u6a5f\u68b0\u5b66\u4f1a"}]}, "item_1617186609386": {"attribute_name": "Subject", "attribute_value_mlt": [{"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "Cutting"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "Cutting Tool Wear"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "Neural Network"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "Data Processing"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "Pattern Recognition"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "Tool Condition Sensing"}]}, "item_1617186626617": {"attribute_name": "Description", "attribute_value_mlt": [{"subitem_description": "Neural network is applied to estimate the durability of a high-speed cutting tool for stainless steel. The lifetime of the tool is categorized into three conditions : \u0027good cutting condition\u0027, \u0027forced cutting condition\u0027 and \u0027end of tool lifetime\u0027. The vibration data for classifying into the three cutting conditions are obtained from an acceleration sensor attached to the tool. These vibration data are transformed into power spectrum data by FFT. The neural network used in this study is constructed using three layers of processing units. Three typical patterns of the power spectrum data according to the three cutting conditions are used to train the neural network. The performance of the neural network in classifying into the three cutting conditions is tested by applying the power spectrum data for every sample. The experimental results show that the neural network is capable of estimating the lifetime condition of the cutting tool", "subitem_description_type": "Other"}, {"subitem_description": "\u8ad6\u6587", "subitem_description_type": "Other"}]}, "item_1617186643794": {"attribute_name": "Publisher", "attribute_value_mlt": [{"subitem_1522300295150": "ja", "subitem_1522300316516": "\u65e5\u672c\u6a5f\u68b0\u5b66\u4f1a"}]}, "item_1617186702042": {"attribute_name": "Language", "attribute_value_mlt": [{"subitem_1551255818386": "jpn"}]}, "item_1617186783814": {"attribute_name": "Identifier", "attribute_value_mlt": [{"subitem_identifier_type": "HDL", "subitem_identifier_uri": "http://hdl.handle.net/20.500.12000/249"}]}, "item_1617186920753": {"attribute_name": "Source Identifier", "attribute_value_mlt": [{"subitem_1522646500366": "ISSN", "subitem_1522646572813": "03875024"}, {"subitem_1522646500366": "NCID", "subitem_1522646572813": "AN00187463"}]}, "item_1617186941041": {"attribute_name": "Source Title", "attribute_value_mlt": [{"subitem_1522650068558": "ja", "subitem_1522650091861": "\u65e5\u672c\u6a5f\u68b0\u5b66\u4f1a\u8ad6\u6587\u96c6. C\u7de8"}, {"subitem_1522650068558": "en", "subitem_1522650091861": "Transactions of the Japan Society of Mechanical Engineers. C"}]}, "item_1617187056579": {"attribute_name": "Bibliographic Information", "attribute_value_mlt": [{"bibliographicIssueNumber": "550", "bibliographicPageEnd": "245", "bibliographicPageStart": "241", "bibliographicVolumeNumber": "58"}]}, "item_1617258105262": {"attribute_name": "Resource Type", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_1617265215918": {"attribute_name": "Version Type", "attribute_value_mlt": [{"subitem_1522305645492": "VoR", "subitem_1600292170262": "http://purl.org/coar/version/c_970fb48d4fbd8a85"}]}, "item_1617605131499": {"attribute_name": "File", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "download_preview_message": "", "file_order": 0, "filename": "kinzyou_h06.pdf", "future_date_message": "", "is_thumbnail": false, "mimetype": "", "size": 0, "url": {"objectType": "fulltext", "url": "https://u-ryukyu.repo.nii.ac.jp/record/2000783/files/kinzyou_h06.pdf"}, "version_id": "727a94e6-d1b2-4b02-9265-7e74f8cf30ea"}]}, "item_title": "\u30cb\u30e5\u30fc\u30e9\u30eb\u30cd\u30c3\u30c8\u30ef\u30fc\u30af\u306b\u3088\u308b\u5207\u524a\u5de5\u5177\u6469\u8017\u72b6\u614b\u306e\u63a8\u5b9a", "item_type_id": "15", "owner": "1", "path": ["1642838338003", "1642838406845"], "permalink_uri": "http://hdl.handle.net/20.500.12000/249", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2007-03-04"}, "publish_date": "2007-03-04", "publish_status": "0", "recid": "2000783", "relation": {}, "relation_version_is_last": true, "title": ["\u30cb\u30e5\u30fc\u30e9\u30eb\u30cd\u30c3\u30c8\u30ef\u30fc\u30af\u306b\u3088\u308b\u5207\u524a\u5de5\u5177\u6469\u8017\u72b6\u614b\u306e\u63a8\u5b9a"], "weko_shared_id": -1}
  1. 学術雑誌論文
  2. その他
  1. 部局別インデックス
  2. 工学部

ニューラルネットワークによる切削工具摩耗状態の推定

http://hdl.handle.net/20.500.12000/249
http://hdl.handle.net/20.500.12000/249
9e6835c3-c06a-4177-b12a-4ceb4cd8ae38
名前 / ファイル ライセンス アクション
kinzyou_h06.pdf kinzyou_h06.pdf
Item type デフォルトアイテムタイプ(フル)(1)
公開日 2007-03-04
タイトル
タイトル ニューラルネットワークによる切削工具摩耗状態の推定
言語 ja
作成者 山本, 哲彦

× 山本, 哲彦

ja 山本, 哲彦

金城, 寛

× 金城, 寛

ja 金城, 寛

福本, 功

× 福本, 功

ja 福本, 功

大松, 繁

× 大松, 繁

ja 大松, 繁

Yamamoto, Tetsuhiko

× Yamamoto, Tetsuhiko

en Yamamoto, Tetsuhiko

Kinjo, Hiroshi

× Kinjo, Hiroshi

en Kinjo, Hiroshi

Fukumoto, Isao

× Fukumoto, Isao

en Fukumoto, Isao

Omatu, Sigeru

× Omatu, Sigeru

en Omatu, Sigeru

アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
権利情報
言語 ja
権利情報 Copyright (c) 1992 日本機械学会
主題
言語 en
主題Scheme Other
主題 Cutting
言語 en
主題Scheme Other
主題 Cutting Tool Wear
言語 en
主題Scheme Other
主題 Neural Network
言語 en
主題Scheme Other
主題 Data Processing
言語 en
主題Scheme Other
主題 Pattern Recognition
言語 en
主題Scheme Other
主題 Tool Condition Sensing
内容記述
内容記述タイプ Other
内容記述 Neural network is applied to estimate the durability of a high-speed cutting tool for stainless steel. The lifetime of the tool is categorized into three conditions : 'good cutting condition', 'forced cutting condition' and 'end of tool lifetime'. The vibration data for classifying into the three cutting conditions are obtained from an acceleration sensor attached to the tool. These vibration data are transformed into power spectrum data by FFT. The neural network used in this study is constructed using three layers of processing units. Three typical patterns of the power spectrum data according to the three cutting conditions are used to train the neural network. The performance of the neural network in classifying into the three cutting conditions is tested by applying the power spectrum data for every sample. The experimental results show that the neural network is capable of estimating the lifetime condition of the cutting tool
内容記述タイプ Other
内容記述 論文
出版者
言語 ja
出版者 日本機械学会
言語
言語 jpn
資源タイプ
資源タイプ journal article
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
識別子
識別子 http://hdl.handle.net/20.500.12000/249
識別子タイプ HDL
収録物識別子
収録物識別子タイプ ISSN
収録物識別子 03875024
収録物識別子タイプ NCID
収録物識別子 AN00187463
収録物名
言語 ja
収録物名 日本機械学会論文集. C編
書誌情報
巻 58, 号 550, p. 241-245
戻る
0
views
See details
Views

Versions

Ver.1 2022-01-24 07:33:27.150522
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON

確認


Powered by WEKO3


Powered by WEKO3