{"_buckets": {"deposit": "43285e05-eb5a-4bf8-a1ee-e8480c1ef9ab"}, "_deposit": {"id": "2004456", "owners": [1], "pid": {"revision_id": 0, "type": "depid", "value": "2004456"}, "status": "published"}, "_oai": {"id": "oai:u-ryukyu.repo.nii.ac.jp:02004456", "sets": ["1642838403123", "1642838405037"]}, "author_link": [], "item_1617186331708": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "\u96e2\u6563\u5e7e\u4f55\u306e\u7dcf\u5408\u7684\u7814\u7a76", "subitem_1551255648112": "ja"}, {"subitem_1551255647225": "Comprehensive Study on Discrete Geometry", "subitem_1551255648112": "en"}]}, "item_1617186419668": {"attribute_name": "Creator", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "\u524d\u539f, \u6ff6", "creatorNameLang": "ja"}]}, {"creatorNames": [{"creatorName": "\u5fb3\u91cd, \u5178\u82f1", "creatorNameLang": "ja"}]}, {"creatorNames": [{"creatorName": "\u5c0f\u95a2, \u9053\u592b", "creatorNameLang": "ja"}]}, {"creatorNames": [{"creatorName": "\u52a0\u7d0d, \u5e79\u96c4", "creatorNameLang": "ja"}]}, {"creatorNames": [{"creatorName": "\u698e\u672c, \u5f66\u885b", "creatorNameLang": "ja"}]}, {"creatorNames": [{"creatorName": "\u4f0a\u85e4, \u6804\u660e", "creatorNameLang": "ja"}]}, {"creatorNames": [{"creatorName": "Maehara, Hiroshi", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Tokushige, Norihide", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Ozeki, Michio", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Kano, Mikio", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Enomoto, Hikoe", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Itoh, Yoshiaki", "creatorNameLang": "en"}]}]}, "item_1617186476635": {"attribute_name": "Access Rights", "attribute_value_mlt": [{"subitem_1522299639480": "open access", "subitem_1600958577026": "http://purl.org/coar/access_right/c_abf2"}]}, "item_1617186609386": {"attribute_name": "Subject", "attribute_value_mlt": [{"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u30d5\u30ec-\u30e0\u30ef-\u30af"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u6574\u6570\u8ddd\u96e2\u8868\u73fe"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u7403\u306e\u63a5\u89e6\u30d1\u30bf-\u30f3"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u30e9\u30f3\u30c0\u30e0\u30fb\u30c8-\u30ca\u30e1\u30f3\u30c8"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u7834\u7523\u554f\u984c"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "framework"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "integral distance representation"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "Contact pattarn of spheres"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "random tournament"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "ruin problem"}]}, "item_1617186626617": {"attribute_name": "Description", "attribute_value_mlt": [{"subitem_description": "\u79d1\u7814\u8cbb\u756a\u53f7: 08304019", "subitem_description_type": "Other"}, {"subitem_description": "\u5e73\u62108-9\u5e74\u5ea6\u6587\u90e8\u7701\u79d1\u5b66\u7814\u7a76\u8cbb\u88dc\u52a9\u91d1(\u57fa\u76e4\u7814\u7a76(A)(1))\u7814\u7a76\u6210\u679c\u5831\u544a\u66f8", "subitem_description_type": "Other"}, {"subitem_description": "\u7814\u7a76\u6982\u8981 : 1.\u30d5\u30ec-\u30e0\u30ef-\u30af\u306e\u525b\u6027\u306b\u95a2\u3057\u3066:3\u6b21\u5143\u7a7a\u9593\u5185\u306e\u5909\u5f62\u3057\u306a\u3044\u7b49\u8fba\u30d5\u30ec-\u30e0\u30ef-\u30af\u3067\u4e09\u89d2\u5f62\u3092\u542b\u307e\u306a\u3044\u3082\u306e\u3092\u69cb\u6210\u3057\u305f.\u307e\u305fm\u304c3\u4ee5\u4e0a,n\u304c5\u4ee5\u4e0a\u306e\u3068\u304d, \u5e73\u9762\u4e0a\u306e2\u90e8\u30d5\u30ec-\u30e0\u30ef-\u30afK(m,n)\u304c\u9023\u7d9a\u7684\u306b\u5909\u5f62\u3059\u308b\u305f\u3081\u306e\u9802\u70b9\u306e\u914d\u7f6e\u3092\u7279\u5fb4\u3065\u3051\u305f.\u3055\u3089\u306b,\u5e73\u9762\u4e0a\u306e\u5909\u5f62\u3057\u306a\u3044\u30d5\u30ec-\u30e0\u30ef-\u30af\u3067,\u8fba\u306e\u9577\u3055\u3068\u30b0\u30e9\u30d5\u306e\u69cb\u9020\u306e\u30c7-\u30bf\u3060\u3051\u304b\u3089\u306f\u4f5c\u56f3\u3067\u304d\u306a\u3044\u3088\u3046\u306a,\u9802\u70b9\u6570\u304c\u6700\u5c11(6\u9802\u70b9)\u306e\u30d5\u30ec-\u30e0\u30ef-\u30af\u3092\u69cb\u6210\u3057\u305f.2.\u57cb\u3081\u8fbc\u307f\u7b49\u306b\u95a2\u3057\u3066:\u3069\u3093\u306a\u6709\u9650\u30b0\u30e9\u30d5 G\u306b\u3064\u3044\u3066\u3082,\u305d\u306e\u9802\u70b9\u96c6\u5408\u3092\u5e73\u9762\u4e0a\u306b\u914d\u7f6e\u3057\u3066,2\u9802\u70b9\u304c\u96a3\u63a5\u3059\u308b\u3068\u304d\u306b\u9650\u308a,2\u9802\u70b9\u306e\u8ddd\u96e2\u306f\u6574\u6570\u306b\u306a\u308b\u3088\u3046\u306b\u3059\u308b\u3053\u3068\u304c\u3067\u304d\u308b(\u6574\u6570\u8ddd\u96e2\u8868\u73fe)\u3053\u3068,\u3055\u3089\u306b,\u6709\u9650\u500b\u306e\u8272\u306b\u3088\u308b\u5e73\u9762\u306e\u4efb\u610f\u306e\u7740\u8272\u306b\u5bfe\u3057\u3066,G\u306e\u6574\u6570\u8ddd\u96e2\u8868\u73fe\u3067,\u9802\u70b9\u304c\u3059\u3079\u3066\u5358\u8272\u3068\u306a\u308b\u3082\u306e\u304c\u5b58\u5728\u3059\u308b\u3053\u3068\u3092\u793a\u3057\u305f.\u6709\u7406\u6570\u4f53\u4e0a\u306e\u5185\u7a4d\u306e\u5b9a\u7fa9\u3055\u308c\u305fn\u6b21\u5143\u306e\u30d9\u30af\u30c8\u30eb\u7a7a\u9593\u306f,2n+1\u6b21\u5143\u306e\u30e6-\u30af\u30ea\u30c3\u30c9\u7a7a\u9593\u5185\u306b\u7b49\u9577\u7684\u306b\u57cb\u3081\u8fbc\u307e\u308c\u308b\u3053\u3068\u3092\u793a\u3057\u305f.\u7403\u9762\u306e\u914d\u7f6e\u7b49\u306b\u3064\u3044\u3066:\u5e73\u9762\u4e0a\u306b\u7f6e\u304b\u308c\u305f\u7403\u306e\u63a5\u89e6\u30d1\u30bf-\u30f3\u3068\u3057\u3066\u5f97\u3089\u308c\u308b\u30b0\u30e9\u30d5\u5168\u4f53\u306e\u65cfF\u306b\u3064\u3044\u3066\u7814\u7a76\u3057\u305f.\u65cfF\u3068\u5e73\u9762\u30b0\u30e9\u30d5\u5168\u4f53\u306e\u65cf\u306e\u9593\u306b\u306f\u5305\u542b\u95a2\u4fc2\u304c\u306a\u3044\u3053\u3068,\u65cfF\u306f,\u3044\u308f\u3086\u308b\u30da\u30c6\u30eb\u30bb\u30f3.\u30d5\u30a1\u30df\u30ea-\u306b\u5c5e\u3059\u308b\u30b0\u30e9\u30d5\u3092\u4e00\u3064\u3082\u542b\u307e\u306a\u3044\u3053\u3068,\u65cfF\u306b\u5c5e\u3059\u308b\u30b0\u30e9\u30d5\u306e\u67d3\u8272\u6570\u306e\u6700\u5927\u5024\u306f5\u304b6\u3067\u3042\u308b\u3053\u3068\u3092\u793a\u3057\u305f.\u30e9\u30f3\u30c0\u30e0\u30fb\u30b0\u30e9\u30d5,\u78ba\u7387\u5206\u5e03\u7b49\u306b\u95a2\u3057\u3066:\u5186\u5468\u4e0a\u306e\u30e9\u30f3\u30c0\u30e0\u70b9\u3067\u751f\u6210\u3055\u308c\u308b\u30c9\u30df\u30ca\u30f3\u30b9\u95a2\u4fc2\u306b\u542b\u307e\u308c\u308b\u30ec\u30ae\u30e5\u30e9-\u30fb\u30c8-\u30ca\u30e1\u30f3\u30c8\u306e\u4f4d\u6570\u306e\u6700\u5927\u5024\u306e\u78ba\u7387\u5206\u5e03\u3092\u6c7a\u5b9a\u3057\u305f.\u307e\u305f,\u53e4\u5178\u7684\u306a\u7834\u7523\u554f\u984c\u306e 3\u4eba\u306e\u5834\u5408\u3078\u306e\u62e1\u5f35\u3092,\u683c\u5b50\u4e0a\u306e\u4e71\u6b69\u306b\u95a2\u3059\u308bMcCrea \u0026 Whipple\u306e\u7d50\u679c\u3092\u5229\u7528\u3057\u3066\u89e3\u6c7a\u3057\u305f.", "subitem_description_type": "Other"}, {"subitem_description": "1.On the rigidity of frameworks : We presented a rigid unit-bar-framework in the 3-dimensional space that has no triangle, and a minimum rigid framework in the plane that cannot be constructed from the data of edge-lengths and graph structure. We proved that if a complete bipartite framework K (m, n) (m \u003e= 3, n \u003e= 5) in the plane admits a continuous deformation, then one of the partite-sets lies on a line L and the other partite-set lies on the line perpendicular to L.\\n2.On embeddings of structures : We proved that for any planar graph G = (V,E), there is an emebedding f : V * R^2 such that x, y * V are adijacent if and only if the distance between f (x) and f (y) is an integer. We also proved that every n dimensional inner product space over the rational field can be isometrically embedded into 2n + 1 dimensional Euclidean space.\\n3.On srrangements of spheres : A graph G is said to be representable by balls on the table, if we can place solid balls on a table, one ball for each vertex, so that two balls are tangent only when the corresponding vertices are adjacent. We proved that the family F of graphs representable by balls on a table is different from the family of planar graphs, and that F does not contain any member of the so-called Petersen family, and that the maximum value of the chromatic number of a graph in F is either 5 or 6.\\n4.On random graphs, probability : We determined the probability distribution of the order of the maximum regular tournament in a dominance relation generated by a randam n points on a circle. We extended the classical ruin problem to 3 persons\u0027 game, and calculated the probability that a fixed gambler A ruined first, and the probability that A is the sole survivor.", "subitem_description_type": "Other"}, {"subitem_description": "\u672a\u516c\u958b\uff1aP.23\uff5e304\uff08\u8ad6\u6587\u5225\u5237\u306e\u305f\u3081\uff09", "subitem_description_type": "Other"}, {"subitem_description": "\u7814\u7a76\u5831\u544a\u66f8", "subitem_description_type": "Other"}]}, "item_1617186643794": {"attribute_name": "Publisher", "attribute_value_mlt": [{"subitem_1522300295150": "ja", "subitem_1522300316516": "\u524d\u539f\u6ff6"}]}, "item_1617186702042": {"attribute_name": "Language", "attribute_value_mlt": [{"subitem_1551255818386": "jpn"}]}, "item_1617186783814": {"attribute_name": "Identifier", "attribute_value_mlt": [{"subitem_identifier_type": "HDL", "subitem_identifier_uri": "http://hdl.handle.net/20.500.12000/9348"}]}, "item_1617186920753": {"attribute_name": "Source Identifier", "attribute_value_mlt": [{"subitem_1522646500366": "NCID", "subitem_1522646572813": "BA35621584"}]}, "item_1617187056579": {"attribute_name": "Bibliographic Information", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "1998-03", "bibliographicIssueDateType": "Issued"}, "bibliographicPageStart": "none"}]}, "item_1617258105262": {"attribute_name": "Resource Type", "attribute_value_mlt": [{"resourcetype": "research report", "resourceuri": "http://purl.org/coar/resource_type/c_18ws"}]}, "item_1617265215918": {"attribute_name": "Version Type", "attribute_value_mlt": [{"subitem_1522305645492": "VoR", "subitem_1600292170262": "http://purl.org/coar/version/c_970fb48d4fbd8a85"}]}, "item_1617605131499": {"attribute_name": "File", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "download_preview_message": "", "file_order": 0, "filename": "08304019.pdf", "future_date_message": "", "is_thumbnail": false, "mimetype": "", "size": 0, "url": {"objectType": "fulltext", "url": "https://u-ryukyu.repo.nii.ac.jp/record/2004456/files/08304019.pdf"}, "version_id": "ff1c7fe0-7ef4-4517-8453-fbcedc9ea51c"}]}, "item_title": "\u96e2\u6563\u5e7e\u4f55\u306e\u7dcf\u5408\u7684\u7814\u7a76", "item_type_id": "15", "owner": "1", "path": ["1642838403123", "1642838405037"], "permalink_uri": "http://hdl.handle.net/20.500.12000/9348", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2009-03-23"}, "publish_date": "2009-03-23", "publish_status": "0", "recid": "2004456", "relation": {}, "relation_version_is_last": true, "title": ["\u96e2\u6563\u5e7e\u4f55\u306e\u7dcf\u5408\u7684\u7814\u7a76"], "weko_shared_id": -1}
http://hdl.handle.net/20.500.12000/9348
http://hdl.handle.net/20.500.12000/9348