ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "43285e05-eb5a-4bf8-a1ee-e8480c1ef9ab"}, "_deposit": {"id": "2004456", "owners": [1], "pid": {"revision_id": 0, "type": "depid", "value": "2004456"}, "status": "published"}, "_oai": {"id": "oai:u-ryukyu.repo.nii.ac.jp:02004456", "sets": ["1642838403123", "1642838405037"]}, "author_link": [], "item_1617186331708": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "\u96e2\u6563\u5e7e\u4f55\u306e\u7dcf\u5408\u7684\u7814\u7a76", "subitem_1551255648112": "ja"}, {"subitem_1551255647225": "Comprehensive Study on Discrete Geometry", "subitem_1551255648112": "en"}]}, "item_1617186419668": {"attribute_name": "Creator", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "\u524d\u539f, \u6ff6", "creatorNameLang": "ja"}]}, {"creatorNames": [{"creatorName": "\u5fb3\u91cd, \u5178\u82f1", "creatorNameLang": "ja"}]}, {"creatorNames": [{"creatorName": "\u5c0f\u95a2, \u9053\u592b", "creatorNameLang": "ja"}]}, {"creatorNames": [{"creatorName": "\u52a0\u7d0d, \u5e79\u96c4", "creatorNameLang": "ja"}]}, {"creatorNames": [{"creatorName": "\u698e\u672c, \u5f66\u885b", "creatorNameLang": "ja"}]}, {"creatorNames": [{"creatorName": "\u4f0a\u85e4, \u6804\u660e", "creatorNameLang": "ja"}]}, {"creatorNames": [{"creatorName": "Maehara, Hiroshi", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Tokushige, Norihide", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Ozeki, Michio", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Kano, Mikio", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Enomoto, Hikoe", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Itoh, Yoshiaki", "creatorNameLang": "en"}]}]}, "item_1617186476635": {"attribute_name": "Access Rights", "attribute_value_mlt": [{"subitem_1522299639480": "open access", "subitem_1600958577026": "http://purl.org/coar/access_right/c_abf2"}]}, "item_1617186609386": {"attribute_name": "Subject", "attribute_value_mlt": [{"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u30d5\u30ec-\u30e0\u30ef-\u30af"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u6574\u6570\u8ddd\u96e2\u8868\u73fe"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u7403\u306e\u63a5\u89e6\u30d1\u30bf-\u30f3"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u30e9\u30f3\u30c0\u30e0\u30fb\u30c8-\u30ca\u30e1\u30f3\u30c8"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u7834\u7523\u554f\u984c"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "framework"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "integral distance representation"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "Contact pattarn of spheres"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "random tournament"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "ruin problem"}]}, "item_1617186626617": {"attribute_name": "Description", "attribute_value_mlt": [{"subitem_description": "\u79d1\u7814\u8cbb\u756a\u53f7: 08304019", "subitem_description_type": "Other"}, {"subitem_description": "\u5e73\u62108-9\u5e74\u5ea6\u6587\u90e8\u7701\u79d1\u5b66\u7814\u7a76\u8cbb\u88dc\u52a9\u91d1(\u57fa\u76e4\u7814\u7a76(A)(1))\u7814\u7a76\u6210\u679c\u5831\u544a\u66f8", "subitem_description_type": "Other"}, {"subitem_description": "\u7814\u7a76\u6982\u8981 : 1.\u30d5\u30ec-\u30e0\u30ef-\u30af\u306e\u525b\u6027\u306b\u95a2\u3057\u3066:3\u6b21\u5143\u7a7a\u9593\u5185\u306e\u5909\u5f62\u3057\u306a\u3044\u7b49\u8fba\u30d5\u30ec-\u30e0\u30ef-\u30af\u3067\u4e09\u89d2\u5f62\u3092\u542b\u307e\u306a\u3044\u3082\u306e\u3092\u69cb\u6210\u3057\u305f.\u307e\u305fm\u304c3\u4ee5\u4e0a,n\u304c5\u4ee5\u4e0a\u306e\u3068\u304d, \u5e73\u9762\u4e0a\u306e2\u90e8\u30d5\u30ec-\u30e0\u30ef-\u30afK(m,n)\u304c\u9023\u7d9a\u7684\u306b\u5909\u5f62\u3059\u308b\u305f\u3081\u306e\u9802\u70b9\u306e\u914d\u7f6e\u3092\u7279\u5fb4\u3065\u3051\u305f.\u3055\u3089\u306b,\u5e73\u9762\u4e0a\u306e\u5909\u5f62\u3057\u306a\u3044\u30d5\u30ec-\u30e0\u30ef-\u30af\u3067,\u8fba\u306e\u9577\u3055\u3068\u30b0\u30e9\u30d5\u306e\u69cb\u9020\u306e\u30c7-\u30bf\u3060\u3051\u304b\u3089\u306f\u4f5c\u56f3\u3067\u304d\u306a\u3044\u3088\u3046\u306a,\u9802\u70b9\u6570\u304c\u6700\u5c11(6\u9802\u70b9)\u306e\u30d5\u30ec-\u30e0\u30ef-\u30af\u3092\u69cb\u6210\u3057\u305f.2.\u57cb\u3081\u8fbc\u307f\u7b49\u306b\u95a2\u3057\u3066:\u3069\u3093\u306a\u6709\u9650\u30b0\u30e9\u30d5 G\u306b\u3064\u3044\u3066\u3082,\u305d\u306e\u9802\u70b9\u96c6\u5408\u3092\u5e73\u9762\u4e0a\u306b\u914d\u7f6e\u3057\u3066,2\u9802\u70b9\u304c\u96a3\u63a5\u3059\u308b\u3068\u304d\u306b\u9650\u308a,2\u9802\u70b9\u306e\u8ddd\u96e2\u306f\u6574\u6570\u306b\u306a\u308b\u3088\u3046\u306b\u3059\u308b\u3053\u3068\u304c\u3067\u304d\u308b(\u6574\u6570\u8ddd\u96e2\u8868\u73fe)\u3053\u3068,\u3055\u3089\u306b,\u6709\u9650\u500b\u306e\u8272\u306b\u3088\u308b\u5e73\u9762\u306e\u4efb\u610f\u306e\u7740\u8272\u306b\u5bfe\u3057\u3066,G\u306e\u6574\u6570\u8ddd\u96e2\u8868\u73fe\u3067,\u9802\u70b9\u304c\u3059\u3079\u3066\u5358\u8272\u3068\u306a\u308b\u3082\u306e\u304c\u5b58\u5728\u3059\u308b\u3053\u3068\u3092\u793a\u3057\u305f.\u6709\u7406\u6570\u4f53\u4e0a\u306e\u5185\u7a4d\u306e\u5b9a\u7fa9\u3055\u308c\u305fn\u6b21\u5143\u306e\u30d9\u30af\u30c8\u30eb\u7a7a\u9593\u306f,2n+1\u6b21\u5143\u306e\u30e6-\u30af\u30ea\u30c3\u30c9\u7a7a\u9593\u5185\u306b\u7b49\u9577\u7684\u306b\u57cb\u3081\u8fbc\u307e\u308c\u308b\u3053\u3068\u3092\u793a\u3057\u305f.\u7403\u9762\u306e\u914d\u7f6e\u7b49\u306b\u3064\u3044\u3066:\u5e73\u9762\u4e0a\u306b\u7f6e\u304b\u308c\u305f\u7403\u306e\u63a5\u89e6\u30d1\u30bf-\u30f3\u3068\u3057\u3066\u5f97\u3089\u308c\u308b\u30b0\u30e9\u30d5\u5168\u4f53\u306e\u65cfF\u306b\u3064\u3044\u3066\u7814\u7a76\u3057\u305f.\u65cfF\u3068\u5e73\u9762\u30b0\u30e9\u30d5\u5168\u4f53\u306e\u65cf\u306e\u9593\u306b\u306f\u5305\u542b\u95a2\u4fc2\u304c\u306a\u3044\u3053\u3068,\u65cfF\u306f,\u3044\u308f\u3086\u308b\u30da\u30c6\u30eb\u30bb\u30f3.\u30d5\u30a1\u30df\u30ea-\u306b\u5c5e\u3059\u308b\u30b0\u30e9\u30d5\u3092\u4e00\u3064\u3082\u542b\u307e\u306a\u3044\u3053\u3068,\u65cfF\u306b\u5c5e\u3059\u308b\u30b0\u30e9\u30d5\u306e\u67d3\u8272\u6570\u306e\u6700\u5927\u5024\u306f5\u304b6\u3067\u3042\u308b\u3053\u3068\u3092\u793a\u3057\u305f.\u30e9\u30f3\u30c0\u30e0\u30fb\u30b0\u30e9\u30d5,\u78ba\u7387\u5206\u5e03\u7b49\u306b\u95a2\u3057\u3066:\u5186\u5468\u4e0a\u306e\u30e9\u30f3\u30c0\u30e0\u70b9\u3067\u751f\u6210\u3055\u308c\u308b\u30c9\u30df\u30ca\u30f3\u30b9\u95a2\u4fc2\u306b\u542b\u307e\u308c\u308b\u30ec\u30ae\u30e5\u30e9-\u30fb\u30c8-\u30ca\u30e1\u30f3\u30c8\u306e\u4f4d\u6570\u306e\u6700\u5927\u5024\u306e\u78ba\u7387\u5206\u5e03\u3092\u6c7a\u5b9a\u3057\u305f.\u307e\u305f,\u53e4\u5178\u7684\u306a\u7834\u7523\u554f\u984c\u306e 3\u4eba\u306e\u5834\u5408\u3078\u306e\u62e1\u5f35\u3092,\u683c\u5b50\u4e0a\u306e\u4e71\u6b69\u306b\u95a2\u3059\u308bMcCrea \u0026 Whipple\u306e\u7d50\u679c\u3092\u5229\u7528\u3057\u3066\u89e3\u6c7a\u3057\u305f.", "subitem_description_type": "Other"}, {"subitem_description": "1.On the rigidity of frameworks : We presented a rigid unit-bar-framework in the 3-dimensional space that has no triangle, and a minimum rigid framework in the plane that cannot be constructed from the data of edge-lengths and graph structure. We proved that if a complete bipartite framework K (m, n) (m \u003e= 3, n \u003e= 5) in the plane admits a continuous deformation, then one of the partite-sets lies on a line L and the other partite-set lies on the line perpendicular to L.\\n2.On embeddings of structures : We proved that for any planar graph G = (V,E), there is an emebedding f : V * R^2 such that x, y * V are adijacent if and only if the distance between f (x) and f (y) is an integer. We also proved that every n dimensional inner product space over the rational field can be isometrically embedded into 2n + 1 dimensional Euclidean space.\\n3.On srrangements of spheres : A graph G is said to be representable by balls on the table, if we can place solid balls on a table, one ball for each vertex, so that two balls are tangent only when the corresponding vertices are adjacent. We proved that the family F of graphs representable by balls on a table is different from the family of planar graphs, and that F does not contain any member of the so-called Petersen family, and that the maximum value of the chromatic number of a graph in F is either 5 or 6.\\n4.On random graphs, probability : We determined the probability distribution of the order of the maximum regular tournament in a dominance relation generated by a randam n points on a circle. We extended the classical ruin problem to 3 persons\u0027 game, and calculated the probability that a fixed gambler A ruined first, and the probability that A is the sole survivor.", "subitem_description_type": "Other"}, {"subitem_description": "\u672a\u516c\u958b\uff1aP.23\uff5e304\uff08\u8ad6\u6587\u5225\u5237\u306e\u305f\u3081\uff09", "subitem_description_type": "Other"}, {"subitem_description": "\u7814\u7a76\u5831\u544a\u66f8", "subitem_description_type": "Other"}]}, "item_1617186643794": {"attribute_name": "Publisher", "attribute_value_mlt": [{"subitem_1522300295150": "ja", "subitem_1522300316516": "\u524d\u539f\u6ff6"}]}, "item_1617186702042": {"attribute_name": "Language", "attribute_value_mlt": [{"subitem_1551255818386": "jpn"}]}, "item_1617186783814": {"attribute_name": "Identifier", "attribute_value_mlt": [{"subitem_identifier_type": "HDL", "subitem_identifier_uri": "http://hdl.handle.net/20.500.12000/9348"}]}, "item_1617186920753": {"attribute_name": "Source Identifier", "attribute_value_mlt": [{"subitem_1522646500366": "NCID", "subitem_1522646572813": "BA35621584"}]}, "item_1617187056579": {"attribute_name": "Bibliographic Information", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "1998-03", "bibliographicIssueDateType": "Issued"}, "bibliographicPageStart": "none"}]}, "item_1617258105262": {"attribute_name": "Resource Type", "attribute_value_mlt": [{"resourcetype": "research report", "resourceuri": "http://purl.org/coar/resource_type/c_18ws"}]}, "item_1617265215918": {"attribute_name": "Version Type", "attribute_value_mlt": [{"subitem_1522305645492": "VoR", "subitem_1600292170262": "http://purl.org/coar/version/c_970fb48d4fbd8a85"}]}, "item_1617605131499": {"attribute_name": "File", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "download_preview_message": "", "file_order": 0, "filename": "08304019.pdf", "future_date_message": "", "is_thumbnail": false, "mimetype": "", "size": 0, "url": {"objectType": "fulltext", "url": "https://u-ryukyu.repo.nii.ac.jp/record/2004456/files/08304019.pdf"}, "version_id": "ff1c7fe0-7ef4-4517-8453-fbcedc9ea51c"}]}, "item_title": "\u96e2\u6563\u5e7e\u4f55\u306e\u7dcf\u5408\u7684\u7814\u7a76", "item_type_id": "15", "owner": "1", "path": ["1642838403123", "1642838405037"], "permalink_uri": "http://hdl.handle.net/20.500.12000/9348", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2009-03-23"}, "publish_date": "2009-03-23", "publish_status": "0", "recid": "2004456", "relation": {}, "relation_version_is_last": true, "title": ["\u96e2\u6563\u5e7e\u4f55\u306e\u7dcf\u5408\u7684\u7814\u7a76"], "weko_shared_id": -1}
  1. その他
  1. 部局別インデックス
  2. 教育学部

離散幾何の総合的研究

http://hdl.handle.net/20.500.12000/9348
http://hdl.handle.net/20.500.12000/9348
2e5e34c2-98a7-4af8-8d65-6802c0bc668e
名前 / ファイル ライセンス アクション
08304019.pdf 08304019.pdf
Item type デフォルトアイテムタイプ(フル)(1)
公開日 2009-03-23
タイトル
タイトル 離散幾何の総合的研究
言語 ja
作成者 前原, 濶

× 前原, 濶

ja 前原, 濶

徳重, 典英

× 徳重, 典英

ja 徳重, 典英

小関, 道夫

× 小関, 道夫

ja 小関, 道夫

加納, 幹雄

× 加納, 幹雄

ja 加納, 幹雄

榎本, 彦衛

× 榎本, 彦衛

ja 榎本, 彦衛

伊藤, 栄明

× 伊藤, 栄明

ja 伊藤, 栄明

Maehara, Hiroshi

× Maehara, Hiroshi

en Maehara, Hiroshi

Tokushige, Norihide

× Tokushige, Norihide

en Tokushige, Norihide

Ozeki, Michio

× Ozeki, Michio

en Ozeki, Michio

Kano, Mikio

× Kano, Mikio

en Kano, Mikio

Enomoto, Hikoe

× Enomoto, Hikoe

en Enomoto, Hikoe

Itoh, Yoshiaki

× Itoh, Yoshiaki

en Itoh, Yoshiaki

アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
主題
言語 ja
主題Scheme Other
主題 フレ-ムワ-ク
言語 ja
主題Scheme Other
主題 整数距離表現
言語 ja
主題Scheme Other
主題 球の接触パタ-ン
言語 ja
主題Scheme Other
主題 ランダム・ト-ナメント
言語 ja
主題Scheme Other
主題 破産問題
内容記述
内容記述タイプ Other
内容記述 科研費番号: 08304019
内容記述タイプ Other
内容記述 平成8-9年度文部省科学研究費補助金(基盤研究(A)(1))研究成果報告書
内容記述タイプ Other
内容記述 研究概要 : 1.フレ-ムワ-クの剛性に関して:3次元空間内の変形しない等辺フレ-ムワ-クで三角形を含まないものを構成した.またmが3以上,nが5以上のとき, 平面上の2部フレ-ムワ-クK(m,n)が連続的に変形するための頂点の配置を特徴づけた.さらに,平面上の変形しないフレ-ムワ-クで,辺の長さとグラフの構造のデ-タだけからは作図できないような,頂点数が最少(6頂点)のフレ-ムワ-クを構成した.2.埋め込み等に関して:どんな有限グラフ Gについても,その頂点集合を平面上に配置して,2頂点が隣接するときに限り,2頂点の距離は整数になるようにすることができる(整数距離表現)こと,さらに,有限個の色による平面の任意の着色に対して,Gの整数距離表現で,頂点がすべて単色となるものが存在することを示した.有理数体上の内積の定義されたn次元のベクトル空間は,2n+1次元のユ-クリッド空間内に等長的に埋め込まれることを示した.球面の配置等について:平面上に置かれた球の接触パタ-ンとして得られるグラフ全体の族Fについて研究した.族Fと平面グラフ全体の族の間には包含関係がないこと,族Fは,いわゆるペテルセン.ファミリ-に属するグラフを一つも含まないこと,族Fに属するグラフの染色数の最大値は5か6であることを示した.ランダム・グラフ,確率分布等に関して:円周上のランダム点で生成されるドミナンス関係に含まれるレギュラ-・ト-ナメントの位数の最大値の確率分布を決定した.また,古典的な破産問題の 3人の場合への拡張を,格子上の乱歩に関するMcCrea & Whippleの結果を利用して解決した.
内容記述タイプ Other
内容記述 1.On the rigidity of frameworks : We presented a rigid unit-bar-framework in the 3-dimensional space that has no triangle, and a minimum rigid framework in the plane that cannot be constructed from the data of edge-lengths and graph structure. We proved that if a complete bipartite framework K (m, n) (m >= 3, n >= 5) in the plane admits a continuous deformation, then one of the partite-sets lies on a line L and the other partite-set lies on the line perpendicular to L.\n2.On embeddings of structures : We proved that for any planar graph G = (V,E), there is an emebedding f : V * R^2 such that x, y * V are adijacent if and only if the distance between f (x) and f (y) is an integer. We also proved that every n dimensional inner product space over the rational field can be isometrically embedded into 2n + 1 dimensional Euclidean space.\n3.On srrangements of spheres : A graph G is said to be representable by balls on the table, if we can place solid balls on a table, one ball for each vertex, so that two balls are tangent only when the corresponding vertices are adjacent. We proved that the family F of graphs representable by balls on a table is different from the family of planar graphs, and that F does not contain any member of the so-called Petersen family, and that the maximum value of the chromatic number of a graph in F is either 5 or 6.\n4.On random graphs, probability : We determined the probability distribution of the order of the maximum regular tournament in a dominance relation generated by a randam n points on a circle. We extended the classical ruin problem to 3 persons' game, and calculated the probability that a fixed gambler A ruined first, and the probability that A is the sole survivor.
内容記述タイプ Other
内容記述 未公開:P.23~304(論文別刷のため)
内容記述タイプ Other
内容記述 研究報告書
出版者
言語 ja
出版者 前原濶
言語
言語 jpn
資源タイプ
資源タイプ research report
資源タイプ識別子 http://purl.org/coar/resource_type/c_18ws
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
識別子
識別子 http://hdl.handle.net/20.500.12000/9348
識別子タイプ HDL
収録物識別子
収録物識別子タイプ NCID
収録物識別子 BA35621584
書誌情報
p. none, 発行日 1998-03
戻る
0
views
See details
Views

Versions

Ver.1 2022-01-27 08:05:45.604570
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON

確認


Powered by WEKO3


Powered by WEKO3