ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "bc24c6a6-23c7-4d37-aa27-ca3dedf41bf2"}, "_deposit": {"id": "2004457", "owners": [1], "pid": {"revision_id": 0, "type": "depid", "value": "2004457"}, "status": "published"}, "_oai": {"id": "oai:u-ryukyu.repo.nii.ac.jp:02004457", "sets": ["1642838403123", "1642838405037"]}, "author_link": [], "item_1617186331708": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "3\u6b21\u5143\u7a7a\u9593\u5185\u306e\u7403\u306e\u914d\u7f6e\u306e\u7814\u7a76", "subitem_1551255648112": "ja"}, {"subitem_1551255647225": "Study on arrangements of solid balls in 3-space", "subitem_1551255648112": "en"}]}, "item_1617186419668": {"attribute_name": "Creator", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "\u524d\u539f, \u6ff6", "creatorNameLang": "ja"}]}, {"creatorNames": [{"creatorName": "\u52a0\u85e4, \u6e80\u751f", "creatorNameLang": "ja"}]}, {"creatorNames": [{"creatorName": "\u677e\u672c, \u4fee\u4e00", "creatorNameLang": "ja"}]}, {"creatorNames": [{"creatorName": "\u5fb3\u91cd, \u5178\u82f1", "creatorNameLang": "ja"}]}, {"creatorNames": [{"creatorName": "Maehara, Hiroshi", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Kato, Mitsuo", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Matsumoto, Shuichi", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Tokushige, Norihide", "creatorNameLang": "en"}]}]}, "item_1617186476635": {"attribute_name": "Access Rights", "attribute_value_mlt": [{"subitem_1522299639480": "open access", "subitem_1600958577026": "http://purl.org/coar/access_right/c_abf2"}]}, "item_1617186609386": {"attribute_name": "Subject", "attribute_value_mlt": [{"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "arrangement of balls"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "knotted necklace"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "piercing balls"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "almost halving-plane"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "representation of a graph"}]}, "item_1617186626617": {"attribute_name": "Description", "attribute_value_mlt": [{"subitem_description": "\u79d1\u7814\u8cbb\u756a\u53f7: 11640129", "subitem_description_type": "Other"}, {"subitem_description": "\u5e73\u621011\u5e74\u5ea6\uff5e\u5e73\u621012\u5e74\u5ea6\u79d1\u5b66\u7814\u7a76\u8cbb\u88dc\u52a9\u91d1(\u57fa\u76e4\u7814\u7a76(C)(2))\u7814\u7a76\u6210\u679c\u5831\u544a\u66f8", "subitem_description_type": "Other"}, {"subitem_description": "\u7814\u7a76\u6982\u8981 : 1.[\u7d50\u3073\u76ee\u3092\u306a\u3059\u7403\u306e\u914d\u5217\u306b\u3064\u3044\u3066]\u5358\u4f4d\u7403\u306e\u5de1\u56de\u5217\u3067\u7d50\u3073\u76ee\u3092\u4f5c\u308b\u3068\u304d,15\u7403\u3042\u308c\u3070\u53ef\u80fd\u3067\u3042\u308b.\u8ddd\u96e2\u304c2+\u221a\u003c2\u003e\u96e2\u308c\u305f2\u679a\u306e\u5e73\u884c\u306a\u5e73\u9762\u306e\u9593\u306b\u306f\u3055\u3080\u3053\u3068\u304c\u3067\u304d\u308b\u5358\u4f4d\u7403\u306e\u5de1\u56de\u5217\u306e\u5834\u5408\u306f,\u7d50\u3073\u76ee\u3092\u4f5c\u308b\u306e\u306b16\u7403\u4ee5\u4e0a\u5fc5\u8981\u3067,\u4e09\u8449\u7d50\u3073\u76ee\u306e\u5834\u5408\u306b\u9650\u308a,\u3061\u3087\u3046\u306916\u7403\u3067\u4f5c\u308c\u308b.\u7403\u306e\u5927\u304d\u3055\u304c\u307e\u3061\u307e\u3061\u3067\u3088\u3051\u308c\u3070,12\u7403\u3067\u7d50\u3073\u76ee\u3092\u4f5c\u308b\u3053\u3068\u304c\u3067\u304d\u308b.2.[\u7403\u306e\u914d\u5217\u306b\u3088\u308b\u30b0\u30e9\u30d5\u306e\u5b9f\u73fe\u306b\u3064\u3044\u3066]3\u6b21\u5143\u7a7a\u9593\u5185\u3067,\u30b0\u30e9\u30d5\u306e\u5404\u9802\u70b9\u3092\u7403\u3067,\u5404\u8fba\u3092,\u7403\u3068\u7403\u3092\u7d50\u3076\u7403\u306e\u5217\u304b\u3089\u306a\u308b\u9396\u3067\u5b9f\u73fe\u3059\u308b.\u305f\u3060\u3057,\u7403\u3069\u3046\u3057\u306f\u30aa\u30fc\u30d0\u30fc\u30e9\u30c3\u30d7\u3057\u306a\u3044\u3082\u306e\u3068\u3059\u308b.\u9802\u70b9\u6570n\u306e\u5b8c\u5168\u30b0\u30e9\u30d5\u306e\u5b9f\u73fe\u306b\u5fc5\u8981\u306a\u7403\u306e\u6700\u5c0f\u500b\u6570 b_n\u306b\u3064\u3044\u3066c_1n^3\u003cb_n\u003cc_2n^3logn\u306a\u308b\u8a55\u4fa1\u3092\u5f97\u305f.\u3059\u3079\u3066\u304c\u30c6\u30fc\u30d6\u30eb\u306e\u4e0a\u306b\u7f6e\u304b\u308c\u3066\u3044\u308b\u7403\u306e\u65cf\u3067\u30b0\u30e9\u30d5\u3092\u5b9f\u73fe\u3059\u308b\u5834\u5408\u3082,\u5fc5\u8981\u306a\u500b\u6570\u306b\u3064\u3044\u3066\u985e\u4f3c\u306e\u8a55\u4fa1\u3092\u5f97\u305f.3.[\u7403\u306e\u65cf\u3092\u523a\u3059\u76f4\u7dda\u306b\u3064\u3044\u3066]d-\u6b21\u5143\u7a7a\u9593R^d\u5185\u306e\u4e92\u3044\u306b\u4ea4\u308f\u3089\u306a\u3044n\u500b\u306e\u7403\u306e\u65cfF\u306b\u5bfe\u3057\u3066, \u3042\u308b\u65b9\u5411\u3092\u9078\u3079\u3070,\u305d\u306e\u65b9\u5411\u306e\u76f4\u7dda\u3067\u306fO\u221a\u003c(1+log\u03bb)nlogn\u003e\u3088\u308a\u591a\u304f\u306e\u7403\u3092\u523a\u3059\u3053\u3068\u306f\u3067\u304d\u306a\u3044.\u305f\u3060\u3057,\u03bb=(\u6700\u5927\u534a\u5f84)/ (\u6700\u5c0f\u534a\u5f84)\u3067\u3042\u308b.\u4e00\u65b9,\u4efb\u610f\u306en\u3010greater than or equal\u3011d\u306b\u3064\u3044\u3066,R^d\u5185\u306en\u500b\u306e\u7403\u304b\u3089\u306a\u308b\u3042\u308b\u65cfF\u3067\u306f,\u3069\u3093\u306a\u65b9\u5411\u3092\u6307\u5b9a\u3057\u3066\u3082,\u305d\u306e\u65b9\u5411\u306e\u3042\u308b\u76f4\u7dda\u3067F\u306e\u4e2d\u306en-d+1\u500b\u4ee5\u4e0a\u306e\u7403\u3092\u523a\u3059\u3053\u3068\u304c\u3067\u304d\u308b.\u30c6\u30fc\u30d6\u30eb\u306e\u4e0a\u306b\u7f6e\u304b\u308c\u3066\u3044\u308b\u7403\u306e\u65cf\u3092,\u5782\u76f4\u306a\u76f4\u7dda\u3067\u523a\u3059\u5834\u5408\u306b\u3064\u3044\u3066\u3082,\u523a\u3059\u500b\u6570\u306e\u5e73\u5747\u306e\u4e0a\u9650\u306e\u8a55\u4fa1\u3092\u5f97\u305f.4.[\u7403\u306e\u65cf\u306e\u5e73\u9762\u306b\u3088\u308b\u5206\u5272\u306b\u3064\u3044\u3066]R^3\u5185\u306e\u4e92\u3044\u306b\u4ea4\u308f\u3089\u306a\u3044n\u500b\u306e\u7403\u306e\u65cf\u306b\u3064\u3044\u3066\u306f,log\u03bb=\u03bf((n/logn)^\u003c1/3\u003e)\u306a\u3089,\u3069\u3061\u3089\u5074\u306b\u3082\u7d04\u534a\u6570\u306e\u7121\u50b7\u306a\u7403\u304c\u6b8b\u308b\u3088\u3046\u306b,\u305d\u306e\u65cf\u3092\u4e00\u679a\u306e\u5e73\u9762\u3067\u5207\u308b\u3053\u3068\u304c\u3067\u304d\u308b.", "subitem_description_type": "Other"}, {"subitem_description": "1. A cyclic sequence of nonoverlapping unit balls in R^3 in which each consecutive balls are tangent, is called a necklace of pearls. We show that to make a knotted necklace of pearls, 15 unit balls are sufficient. To make a knotted necklace that can be inscribed between a pair of parallel planes with distance 2+\u221a\u003c2\u003e apart, 16 unit balls are necessary, and the trefoil is the unique knot that can be made by 16 unit balls. 2. A chain is a finite sequence of balls in which each consecutive pair of balls are tangent. Make a graph by representing vertices by balls, and edges by chains connecting two vertex-balls. Let b_n be the minimum number of balls necessary to make a complete graph of n vertices. Then we got the bound c_1n^3\u003cb_n\u003cc_2n^3 log n. A similar bound is also obtained when we use balls all sitting on a fixed table. 3. For a family F of balls in d-dimensional space R^d, let \u03bb= \u03bb(F)=(the max. radius) / (the min. radius). We proved that for any family of n balls in R^d, there is a direction such that any line with this direction intersects at most O (\u221a\u003c(1+log\u03bb)n log n\u003e) balls. On the otherhand, for n\u3010greater than or equal\u3011d, there is a family of nonoverlapping n balls in R^d such that for any direction, there is a line with this direction that intersects at least n-d+1 balls. For a family of balls sitting on a fixed table in R^3, we also got an upper bound of the average number of balls pierced by a vertical line meeting the table. 4. If a family of nonoverlapping balls in R^3 satisfies that log\u03bb=o ((n/log n)^\u003c1/3\u003e), then there is a plane both sides of which contain n/2-o (n) intact balls.", "subitem_description_type": "Other"}, {"subitem_description": "\u672a\u516c\u958b\uff1aP.7\uff5e120\uff08\u8ad6\u6587\u5225\u5237\u306e\u305f\u3081\uff09", "subitem_description_type": "Other"}, {"subitem_description": "\u7814\u7a76\u5831\u544a\u66f8", "subitem_description_type": "Other"}]}, "item_1617186643794": {"attribute_name": "Publisher", "attribute_value_mlt": [{"subitem_1522300295150": "ja", "subitem_1522300316516": "\u524d\u539f\u6ff6"}]}, "item_1617186702042": {"attribute_name": "Language", "attribute_value_mlt": [{"subitem_1551255818386": "jpn"}]}, "item_1617186783814": {"attribute_name": "Identifier", "attribute_value_mlt": [{"subitem_identifier_type": "HDL", "subitem_identifier_uri": "http://hdl.handle.net/20.500.12000/9347"}]}, "item_1617186920753": {"attribute_name": "Source Identifier", "attribute_value_mlt": [{"subitem_1522646500366": "NCID", "subitem_1522646572813": "BA64482732"}]}, "item_1617258105262": {"attribute_name": "Resource Type", "attribute_value_mlt": [{"resourcetype": "research report", "resourceuri": "http://purl.org/coar/resource_type/c_18ws"}]}, "item_1617265215918": {"attribute_name": "Version Type", "attribute_value_mlt": [{"subitem_1522305645492": "VoR", "subitem_1600292170262": "http://purl.org/coar/version/c_970fb48d4fbd8a85"}]}, "item_1617605131499": {"attribute_name": "File", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "download_preview_message": "", "file_order": 0, "filename": "11640129.pdf", "future_date_message": "", "is_thumbnail": false, "mimetype": "", "size": 0, "url": {"objectType": "fulltext", "url": "https://u-ryukyu.repo.nii.ac.jp/record/2004457/files/11640129.pdf"}, "version_id": "ec3874ce-6e75-4cd7-868e-9de29383eb90"}]}, "item_title": "3\u6b21\u5143\u7a7a\u9593\u5185\u306e\u7403\u306e\u914d\u7f6e\u306e\u7814\u7a76", "item_type_id": "15", "owner": "1", "path": ["1642838403123", "1642838405037"], "permalink_uri": "http://hdl.handle.net/20.500.12000/9347", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2009-03-23"}, "publish_date": "2009-03-23", "publish_status": "0", "recid": "2004457", "relation": {}, "relation_version_is_last": true, "title": ["3\u6b21\u5143\u7a7a\u9593\u5185\u306e\u7403\u306e\u914d\u7f6e\u306e\u7814\u7a76"], "weko_shared_id": -1}
  1. その他
  1. 部局別インデックス
  2. 教育学部

3次元空間内の球の配置の研究

http://hdl.handle.net/20.500.12000/9347
http://hdl.handle.net/20.500.12000/9347
bbc45435-bbb3-48dc-955b-bb5196741a34
名前 / ファイル ライセンス アクション
11640129.pdf 11640129.pdf
Item type デフォルトアイテムタイプ(フル)(1)
公開日 2009-03-23
タイトル
タイトル 3次元空間内の球の配置の研究
言語 ja
作成者 前原, 濶

× 前原, 濶

ja 前原, 濶

加藤, 満生

× 加藤, 満生

ja 加藤, 満生

松本, 修一

× 松本, 修一

ja 松本, 修一

徳重, 典英

× 徳重, 典英

ja 徳重, 典英

Maehara, Hiroshi

× Maehara, Hiroshi

en Maehara, Hiroshi

Kato, Mitsuo

× Kato, Mitsuo

en Kato, Mitsuo

Matsumoto, Shuichi

× Matsumoto, Shuichi

en Matsumoto, Shuichi

Tokushige, Norihide

× Tokushige, Norihide

en Tokushige, Norihide

アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
主題
言語 en
主題Scheme Other
主題 arrangement of balls
言語 en
主題Scheme Other
主題 knotted necklace
言語 en
主題Scheme Other
主題 piercing balls
言語 en
主題Scheme Other
主題 almost halving-plane
言語 en
主題Scheme Other
主題 representation of a graph
内容記述
内容記述タイプ Other
内容記述 科研費番号: 11640129
内容記述タイプ Other
内容記述 平成11年度~平成12年度科学研究費補助金(基盤研究(C)(2))研究成果報告書
内容記述タイプ Other
内容記述 研究概要 : 1.[結び目をなす球の配列について]単位球の巡回列で結び目を作るとき,15球あれば可能である.距離が2+√<2>離れた2枚の平行な平面の間にはさむことができる単位球の巡回列の場合は,結び目を作るのに16球以上必要で,三葉結び目の場合に限り,ちょうど16球で作れる.球の大きさがまちまちでよければ,12球で結び目を作ることができる.2.[球の配列によるグラフの実現について]3次元空間内で,グラフの各頂点を球で,各辺を,球と球を結ぶ球の列からなる鎖で実現する.ただし,球どうしはオーバーラップしないものとする.頂点数nの完全グラフの実現に必要な球の最小個数 b_nについてc_1n^3<b_n<c_2n^3lognなる評価を得た.すべてがテーブルの上に置かれている球の族でグラフを実現する場合も,必要な個数について類似の評価を得た.3.[球の族を刺す直線について]d-次元空間R^d内の互いに交わらないn個の球の族Fに対して, ある方向を選べば,その方向の直線ではO√<(1+logλ)nlogn>より多くの球を刺すことはできない.ただし,λ=(最大半径)/ (最小半径)である.一方,任意のn【greater than or equal】dについて,R^d内のn個の球からなるある族Fでは,どんな方向を指定しても,その方向のある直線でFの中のn-d+1個以上の球を刺すことができる.テーブルの上に置かれている球の族を,垂直な直線で刺す場合についても,刺す個数の平均の上限の評価を得た.4.[球の族の平面による分割について]R^3内の互いに交わらないn個の球の族については,logλ=ο((n/logn)^<1/3>)なら,どちら側にも約半数の無傷な球が残るように,その族を一枚の平面で切ることができる.
内容記述タイプ Other
内容記述 1. A cyclic sequence of nonoverlapping unit balls in R^3 in which each consecutive balls are tangent, is called a necklace of pearls. We show that to make a knotted necklace of pearls, 15 unit balls are sufficient. To make a knotted necklace that can be inscribed between a pair of parallel planes with distance 2+√<2> apart, 16 unit balls are necessary, and the trefoil is the unique knot that can be made by 16 unit balls. 2. A chain is a finite sequence of balls in which each consecutive pair of balls are tangent. Make a graph by representing vertices by balls, and edges by chains connecting two vertex-balls. Let b_n be the minimum number of balls necessary to make a complete graph of n vertices. Then we got the bound c_1n^3<b_n<c_2n^3 log n. A similar bound is also obtained when we use balls all sitting on a fixed table. 3. For a family F of balls in d-dimensional space R^d, let λ= λ(F)=(the max. radius) / (the min. radius). We proved that for any family of n balls in R^d, there is a direction such that any line with this direction intersects at most O (√<(1+logλ)n log n>) balls. On the otherhand, for n【greater than or equal】d, there is a family of nonoverlapping n balls in R^d such that for any direction, there is a line with this direction that intersects at least n-d+1 balls. For a family of balls sitting on a fixed table in R^3, we also got an upper bound of the average number of balls pierced by a vertical line meeting the table. 4. If a family of nonoverlapping balls in R^3 satisfies that logλ=o ((n/log n)^<1/3>), then there is a plane both sides of which contain n/2-o (n) intact balls.
内容記述タイプ Other
内容記述 未公開:P.7~120(論文別刷のため)
内容記述タイプ Other
内容記述 研究報告書
出版者
言語 ja
出版者 前原濶
言語
言語 jpn
資源タイプ
資源タイプ research report
資源タイプ識別子 http://purl.org/coar/resource_type/c_18ws
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
識別子
識別子 http://hdl.handle.net/20.500.12000/9347
識別子タイプ HDL
収録物識別子
収録物識別子タイプ NCID
収録物識別子 BA64482732
戻る
0
views
See details
Views

Versions

Ver.1 2022-01-27 08:05:47.844518
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON

確認


Powered by WEKO3


Powered by WEKO3