ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "45c1a1a6-a2a4-47f5-b116-550cfee176c4"}, "_deposit": {"id": "2005660", "owners": [1], "pid": {"revision_id": 0, "type": "depid", "value": "2005660"}, "status": "published"}, "_oai": {"id": "oai:u-ryukyu.repo.nii.ac.jp:02005660", "sets": ["1642838403123", "1642838406414"]}, "author_link": [], "item_1617186331708": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Kempf\u8907\u4f53\u306e\u8d85\u5224\u5225\u5f0f\u3078\u306e\u5fdc\u7528", "subitem_1551255648112": "ja"}, {"subitem_1551255647225": "Am application of Kempf complex to hyper-discriminant", "subitem_1551255648112": "en"}]}, "item_1617186419668": {"attribute_name": "Creator", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "\u524d\u7530, \u9ad8\u58eb", "creatorNameLang": "ja"}]}, {"creatorNames": [{"creatorName": "\u5fd7\u8cc0, \u535a\u96c4", "creatorNameLang": "ja"}]}, {"creatorNames": [{"creatorName": "Maeda, Takashi", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Shiga, Hiroo", "creatorNameLang": "en"}]}]}, "item_1617186476635": {"attribute_name": "Access Rights", "attribute_value_mlt": [{"subitem_1522299639480": "open access", "subitem_1600958577026": "http://purl.org/coar/access_right/c_abf2"}]}, "item_1617186609386": {"attribute_name": "Subject", "attribute_value_mlt": [{"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u5bfe\u79f0\u7fa4"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u534a\u9806\u5e8f"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "Bruhat order"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u3079\u304d\u96f6\u7dda\u5f62\u5909\u63db"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "Jordan\u6a19\u6e96\u5f62"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u30b0\u30e9\u30b9\u30de\u30f3\u591a\u69d8\u4f53"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u7b49\u8cea\u7a7a\u9593"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "Little wood-Rithardson\u76e4"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "nil potent linear trans formation"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "Jordan canonical form"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "grassmann variety"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "Little wood-Richardson tableaux"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "nil potent matrix"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "Schubert cell"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "homogeneous space"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "singular set"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "Littlewood-Richardson\u76e4"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "Scnubert\u591a\u69d8\u4f53"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u3079\u304d\u96f6\u884c\u5217"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u30b3\u30af\u30bb\u30bf\u30fc\u7fa4"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u30d7\u30d5\u30a1\u30c3\u30d5\u30a3\u30a2\u30f3"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u30d7\u30ea\u30e5\u30c3\u30ab\u30fc\u57cb\u8fbc"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u4ea4\u4ee3\u7fa4"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u53cc\u5bfe\u591a\u69d8\u4f53"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u7279\u7570\u70b9\u96c6\u5408"}]}, "item_1617186626617": {"attribute_name": "Description", "attribute_value_mlt": [{"subitem_description": "\u79d1\u7814\u8cbb\u756a\u53f7: 14540035", "subitem_description_type": "Other"}, {"subitem_description": "\u5e73\u621014\u5e74\u5ea6\uff5e\u5e73\u621015\u5e74\u5ea6\u79d1\u5b66\u7814\u7a76\u8cbb\u88dc\u52a9\u91d1(\u57fa\u76e4\u7814\u7a76(C)(2))\u7814\u7a76\u6210\u679c\u5831\u544a\u66f8", "subitem_description_type": "Other"}, {"subitem_description": "\u7814\u7a76\u6982\u8981\uff08\u548c\u6587\uff09\uff1a\u5e73\u621014\u5e74\u5ea6:A partial order on the symmetric groups defined by 3-cycles (3-\u30b5\u30a4\u30af\u30eb\u3067\u5b9a\u7fa9\u3055\u308c\u308b\u5bfe\u79f0\u7fa4\u306e\u534a\u9806\u5e8f):n\u6b21\u5bfe\u79f0\u7fa4\u306e\u5143\u306f\u81ea\u7136\u306a\u7a4d\u8868\u793a(\u6700\u77ed\u8868\u793a)\u3092\u3082\u3064\u304c\u3001\u4ea4\u4ee3\u7fa4\u306b\u5bfe\u3057\u3066\u3053\u306e\u4e8b\u5b9f\u306b\u76f8\u5f53\u3059\u308b\u3082\u306e\u304c\u306a\u3044\u304b\u3001\u3064\u307e\u308a\u3001n\u6b21\u4ea4\u4ee3\u7fa4\u306e\u4e00\u822c\u306e\u5143\u306e\u3001n-2\u500b\u306e3-\u30b5\u30a4\u30af\u30eb(123),...,(n-2,n-1,n)\u306b\u3088\u308b\u81ea\u7136\u306a\u7a4d\u8868\u793a\u306f\u4f55\u304b\u30021\u3064\u306e\u8a66\u307f\u3068\u3057\u3066\u3001\u5bfe\u79f0\u7fa4\u306e Bruhat order\u3068\u306f\u7570\u306a\u308b\u534a\u9806\u5e8f\u3092\u65b0\u305f\u306b\u5b9a\u7fa9\u3057\u305f(\u3053\u308c\u306f\u4e00\u822c\u306e\u30b3\u30af\u30bb\u30bf\u30fc\u7fa4\u3067\u3082\u540c\u3058\u3088\u3046\u306b\u5b9a\u7fa9\u53ef\u80fd)\u3002\u4ea4\u4ee3\u7fa4\u306e\u5143\u304c\u3053\u306e\u534a\u9806\u5e8f\u3067\u3001\u6700\u77ed\u8868\u793a\u304c\u53ef\u80fd\u3067\u3042\u308b\u305f\u3081\u306e1\u3064\u306e\u5341\u5206\u6761\u4ef6\u3092\u5f97\u305f\u3002\u307e\u305f\u3001\u6700\u77ed\u8868\u793a\u304c\u4e0d\u53ef\u80fd\u306a\u5143\u306f\u300c\u6b86\u3069\u4e0d\u5206\u89e3\u306a\u5143\u300d\u304b\u3089\u5f97\u3089\u308c\u308b\u3053\u3068\u3092\u793a\u3057\u30018\u6b21\u4ee5\u4e0b\u306e\u300c\u6b86\u3069\u4e0d\u5206\u89e3\u306a\u5143\u300d\u3092\u3059\u3079\u3066\u5177\u4f53\u7684\u306b\u69cb\u6210\u3057\u305f\u3002\u5e73\u621015\u5e74\u5ea6:The varieties of subspaces stable under a nilpotent transformation (\u3079\u304d\u96f6\u5909\u63db\u3067\u5b89\u5b9a\u306a\u90e8\u5206\u7a7a\u9593\u306e\u306a\u3059\u591a\u69d8\u4f53):\u30d9\u30af\u30c8\u30eb\u7a7a\u9593\u306e\u3079\u304d\u96f6\u5909\u63dbf : V -\u003e V\u306eJordan\u6a19\u6e96\u5f62\u306e\u30bf\u30a4\u30d7\u3092type V = a\u3068\u66f8\u304f\u30022\u3064\u306e\u5206\u5272b\u3068c\u306b\u5bfe\u3057\u3066\u3001\u96c6\u5408S(a, b, c)={W\u003cV ; f(W)\u003cW, type W=b, typeV/W=c}\u306f\u3001V\u306e|b|\u6b21\u5143\u90e8\u5206\u7a7a\u9593\u306e\u306a\u3059\u30b0\u30e9\u30b9\u30de\u30f3\u591a\u69d8\u4f53G(|b|,V)\u306e\u4e2d\u3067\u5c40\u6240\u9589\u96c6\u5408\u306b\u306a\u308b\u3002S(a, b, c)\u306eG(|b|,V)\u5185\u3067\u306eZariski\u9589\u5305X(a, b, c)\u306e\u7279\u7570\u70b9\u96c6\u5408\u306b\u3064\u3044\u3066\u4ee5\u4e0b\u306e\u7d50\u679c\u3092\u5f97\u305f\u3002(1)S(a, b, c)\u306f\u975e\u7279\u7570\u3002(2)X(a, b, c)\u306f\u3001\u5206\u5272\u306e\u3042\u308b\u534a\u9806\u5e8f\u003c\u306b\u95a2\u3057\u3066b\u0027\u003cb, c\u0027\u003cc\u306a\u308b\u3082\u306e\u306b\u95a2\u3059\u308bS(a, b\u0027,c\u0027)\u306e\u548c\u96c6\u5408\u3002(3)generic vectors\u3092\u5b9a\u7fa9\u3057\u305f\u3002\u3053\u308c\u306b\u3088\u308aX(a, b, c)\u306e\u751f\u6210\u70b9\u304c\u5177\u4f53\u7684\u306b\u69cb\u6210\u3067\u304d\u3066\u3001b\u306e\u5217\u306e\u5927\u304d\u3055\u304c\u5c0f\u3055\u3044\u3068\u304d\u306fX(a, b, c)\u306e\u5b9a\u7fa9\u65b9\u7a0b\u5f0f\u304c\u5bb9\u6613\u306b\u8a18\u8ff0\u3067\u304d\u308b\u3002(4)\u4f59\u6b21\u51432\u306e\u548c\u308b\u7279\u7570\u70b9\u96c6\u5408\u306e\u5b9a\u7fa9\u65b9\u7a0b\u5f0f\u3092\u8a18\u8ff0\u3057\u305f\u3002", "subitem_description_type": "Other"}, {"subitem_description": "\u6982\u8981\uff08\u82f1\u6587\uff09\uff1a[A partila order on the symmetric groups defined by 3-cycles] We define a partial order on the symmetric group S_n of degree n by x\u3010less than or equal\u3011y iff y=a_1\u3010triple bond\u3011a_kx with i(y)=i(x)+2k where a_1,\u3010triple bond\u3011, a_k are 3-cycles of increasing or decreasing consecutive three letters and i(*) is the nmber of inversions of the element * of S_n, on the analogy of the weak Bruhat Order. Whether an even parmutaion is comparable to the identity or not in this ordering is considered. It is shown that all of the even permutations of degree n which map 1 to n or n-1 are comparable to the identity. [The varieties of subspaces stable under a nilpotent transformation] Let f : V \u2192 V be a nilpotent linear transformation of a vector space V of type V=\u03bb,i.e. the size of Jordan blocks \u03bb_1\u3010greater than or equal\u3011\u03bb_2\u3010greater than or equal\u3011\u3010triple bond\u3011\u3010greater than or equal\u3011\u03bb_\u03b9. For an f-stable subspace W of V,i.e. f(W) \u2282 W, the types of W and V/W are those of the maps f|w : W \u2192 W and fv/w : V/W \u2192 V/W induced by f, respectively. For partitions \u03bd and \u03bc we investigate the set S(\u03bb,\u03bd,\u03bc)={W \u2282 V;f(W) \u2282 W,type W=\u03bd,type V/W=\u03bc} and the singular locus of the Zariski closure X(\u03bb,\u03bd,\u03bc) of S(\u03bb,\u03bd,\u03bc) in the grassmaniann of subspaces of V of dimension |\u03bd|. We show that S(\u03bb,\u03bd,\u03bc) is nonsingular and its connected components are rational varieties ; generic vectors are introduced, which define the generic points of the irreducible components of X(\u03bb,\u03bd,\u03bc) whose Plucker coordinates are fairly simple to express their defining equations. We describe explicitly the coordinate ring of an affine openset of X(\u03bb,(d),\u03bc) with the singular locus of codimension two.", "subitem_description_type": "Other"}, {"subitem_description": "\u672a\u516c\u958b\uff1aP.5\u4ee5\u964d(\u5225\u5237\u8ad6\u6587\u306e\u305f\u3081)", "subitem_description_type": "Other"}, {"subitem_description": "\u7814\u7a76\u5831\u544a\u66f8", "subitem_description_type": "Other"}]}, "item_1617186643794": {"attribute_name": "Publisher", "attribute_value_mlt": [{"subitem_1522300295150": "ja", "subitem_1522300316516": "\u524d\u7530\u9ad8\u58eb"}]}, "item_1617186702042": {"attribute_name": "Language", "attribute_value_mlt": [{"subitem_1551255818386": "jpn"}]}, "item_1617186783814": {"attribute_name": "Identifier", "attribute_value_mlt": [{"subitem_identifier_type": "HDL", "subitem_identifier_uri": "http://hdl.handle.net/20.500.12000/18187"}]}, "item_1617186920753": {"attribute_name": "Source Identifier", "attribute_value_mlt": [{"subitem_1522646500366": "NCID", "subitem_1522646572813": "BA74732541"}]}, "item_1617258105262": {"attribute_name": "Resource Type", "attribute_value_mlt": [{"resourcetype": "research report", "resourceuri": "http://purl.org/coar/resource_type/c_18ws"}]}, "item_1617265215918": {"attribute_name": "Version Type", "attribute_value_mlt": [{"subitem_1522305645492": "AM", "subitem_1600292170262": "http://purl.org/coar/version/c_ab4af688f83e57aa"}]}, "item_1617605131499": {"attribute_name": "File", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "download_preview_message": "", "file_order": 0, "filename": "14540035.pdf", "future_date_message": "", "is_thumbnail": false, "mimetype": "", "size": 0, "url": {"objectType": "fulltext", "url": "https://u-ryukyu.repo.nii.ac.jp/record/2005660/files/14540035.pdf"}, "version_id": "3275feeb-d33e-43f5-b48f-06690e021ac1"}]}, "item_title": "Kempf\u8907\u4f53\u306e\u8d85\u5224\u5225\u5f0f\u3078\u306e\u5fdc\u7528", "item_type_id": "15", "owner": "1", "path": ["1642838403123", "1642838406414"], "permalink_uri": "http://hdl.handle.net/20.500.12000/18187", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2010-10-05"}, "publish_date": "2010-10-05", "publish_status": "0", "recid": "2005660", "relation": {}, "relation_version_is_last": true, "title": ["Kempf\u8907\u4f53\u306e\u8d85\u5224\u5225\u5f0f\u3078\u306e\u5fdc\u7528"], "weko_shared_id": -1}
  1. その他
  1. 部局別インデックス
  2. 理学部

Kempf複体の超判別式への応用

http://hdl.handle.net/20.500.12000/18187
http://hdl.handle.net/20.500.12000/18187
2055684a-e34e-4d61-b2b8-a8f1ea982b2c
名前 / ファイル ライセンス アクション
14540035.pdf 14540035.pdf
Item type デフォルトアイテムタイプ(フル)(1)
公開日 2010-10-05
タイトル
タイトル Kempf複体の超判別式への応用
言語 ja
作成者 前田, 高士

× 前田, 高士

ja 前田, 高士

志賀, 博雄

× 志賀, 博雄

ja 志賀, 博雄

Maeda, Takashi

× Maeda, Takashi

en Maeda, Takashi

Shiga, Hiroo

× Shiga, Hiroo

en Shiga, Hiroo

アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
主題
言語 ja
主題Scheme Other
主題 対称群
言語 ja
主題Scheme Other
主題 半順序
言語 ja
主題Scheme Other
主題 べき零線形変換
言語 ja
主題Scheme Other
主題 Jordan標準形
言語 ja
主題Scheme Other
主題 グラスマン多様体
言語 ja
主題Scheme Other
主題 等質空間
言語 ja
主題Scheme Other
主題 Little wood-Rithardson盤
言語 ja
主題Scheme Other
主題 Littlewood-Richardson盤
言語 ja
主題Scheme Other
主題 Scnubert多様体
言語 ja
主題Scheme Other
主題 べき零行列
言語 ja
主題Scheme Other
主題 コクセター群
言語 ja
主題Scheme Other
主題 プファッフィアン
言語 ja
主題Scheme Other
主題 プリュッカー埋込
言語 ja
主題Scheme Other
主題 交代群
言語 ja
主題Scheme Other
主題 双対多様体
言語 ja
主題Scheme Other
主題 特異点集合
内容記述
内容記述タイプ Other
内容記述 科研費番号: 14540035
内容記述タイプ Other
内容記述 平成14年度~平成15年度科学研究費補助金(基盤研究(C)(2))研究成果報告書
内容記述タイプ Other
内容記述 研究概要(和文):平成14年度:A partial order on the symmetric groups defined by 3-cycles (3-サイクルで定義される対称群の半順序):n次対称群の元は自然な積表示(最短表示)をもつが、交代群に対してこの事実に相当するものがないか、つまり、n次交代群の一般の元の、n-2個の3-サイクル(123),...,(n-2,n-1,n)による自然な積表示は何か。1つの試みとして、対称群の Bruhat orderとは異なる半順序を新たに定義した(これは一般のコクセター群でも同じように定義可能)。交代群の元がこの半順序で、最短表示が可能であるための1つの十分条件を得た。また、最短表示が不可能な元は「殆ど不分解な元」から得られることを示し、8次以下の「殆ど不分解な元」をすべて具体的に構成した。平成15年度:The varieties of subspaces stable under a nilpotent transformation (べき零変換で安定な部分空間のなす多様体):ベクトル空間のべき零変換f : V -> VのJordan標準形のタイプをtype V = aと書く。2つの分割bとcに対して、集合S(a, b, c)={W<V ; f(W)<W, type W=b, typeV/W=c}は、Vの|b|次元部分空間のなすグラスマン多様体G(|b|,V)の中で局所閉集合になる。S(a, b, c)のG(|b|,V)内でのZariski閉包X(a, b, c)の特異点集合について以下の結果を得た。(1)S(a, b, c)は非特異。(2)X(a, b, c)は、分割のある半順序<に関してb'<b, c'<cなるものに関するS(a, b',c')の和集合。(3)generic vectorsを定義した。これによりX(a, b, c)の生成点が具体的に構成できて、bの列の大きさが小さいときはX(a, b, c)の定義方程式が容易に記述できる。(4)余次元2の和る特異点集合の定義方程式を記述した。
内容記述タイプ Other
内容記述 概要(英文):[A partila order on the symmetric groups defined by 3-cycles] We define a partial order on the symmetric group S_n of degree n by x【less than or equal】y iff y=a_1【triple bond】a_kx with i(y)=i(x)+2k where a_1,【triple bond】, a_k are 3-cycles of increasing or decreasing consecutive three letters and i(*) is the nmber of inversions of the element * of S_n, on the analogy of the weak Bruhat Order. Whether an even parmutaion is comparable to the identity or not in this ordering is considered. It is shown that all of the even permutations of degree n which map 1 to n or n-1 are comparable to the identity. [The varieties of subspaces stable under a nilpotent transformation] Let f : V → V be a nilpotent linear transformation of a vector space V of type V=λ,i.e. the size of Jordan blocks λ_1【greater than or equal】λ_2【greater than or equal】【triple bond】【greater than or equal】λ_ι. For an f-stable subspace W of V,i.e. f(W) ⊂ W, the types of W and V/W are those of the maps f|w : W → W and fv/w : V/W → V/W induced by f, respectively. For partitions ν and μ we investigate the set S(λ,ν,μ)={W ⊂ V;f(W) ⊂ W,type W=ν,type V/W=μ} and the singular locus of the Zariski closure X(λ,ν,μ) of S(λ,ν,μ) in the grassmaniann of subspaces of V of dimension |ν|. We show that S(λ,ν,μ) is nonsingular and its connected components are rational varieties ; generic vectors are introduced, which define the generic points of the irreducible components of X(λ,ν,μ) whose Plucker coordinates are fairly simple to express their defining equations. We describe explicitly the coordinate ring of an affine openset of X(λ,(d),μ) with the singular locus of codimension two.
内容記述タイプ Other
内容記述 未公開:P.5以降(別刷論文のため)
内容記述タイプ Other
内容記述 研究報告書
出版者
言語 ja
出版者 前田高士
言語
言語 jpn
資源タイプ
資源タイプ research report
資源タイプ識別子 http://purl.org/coar/resource_type/c_18ws
出版タイプ
出版タイプ AM
出版タイプResource http://purl.org/coar/version/c_ab4af688f83e57aa
識別子
識別子 http://hdl.handle.net/20.500.12000/18187
識別子タイプ HDL
収録物識別子
収録物識別子タイプ NCID
収録物識別子 BA74732541
戻る
0
views
See details
Views

Versions

Ver.1 2022-01-28 01:18:48.032545
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON

確認


Powered by WEKO3


Powered by WEKO3