{"_buckets": {"deposit": "45c1a1a6-a2a4-47f5-b116-550cfee176c4"}, "_deposit": {"id": "2005660", "owners": [1], "pid": {"revision_id": 0, "type": "depid", "value": "2005660"}, "status": "published"}, "_oai": {"id": "oai:u-ryukyu.repo.nii.ac.jp:02005660", "sets": ["1642838403123", "1642838406414"]}, "author_link": [], "item_1617186331708": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Kempf\u8907\u4f53\u306e\u8d85\u5224\u5225\u5f0f\u3078\u306e\u5fdc\u7528", "subitem_1551255648112": "ja"}, {"subitem_1551255647225": "Am application of Kempf complex to hyper-discriminant", "subitem_1551255648112": "en"}]}, "item_1617186419668": {"attribute_name": "Creator", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "\u524d\u7530, \u9ad8\u58eb", "creatorNameLang": "ja"}]}, {"creatorNames": [{"creatorName": "\u5fd7\u8cc0, \u535a\u96c4", "creatorNameLang": "ja"}]}, {"creatorNames": [{"creatorName": "Maeda, Takashi", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Shiga, Hiroo", "creatorNameLang": "en"}]}]}, "item_1617186476635": {"attribute_name": "Access Rights", "attribute_value_mlt": [{"subitem_1522299639480": "open access", "subitem_1600958577026": "http://purl.org/coar/access_right/c_abf2"}]}, "item_1617186609386": {"attribute_name": "Subject", "attribute_value_mlt": [{"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u5bfe\u79f0\u7fa4"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u534a\u9806\u5e8f"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "Bruhat order"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u3079\u304d\u96f6\u7dda\u5f62\u5909\u63db"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "Jordan\u6a19\u6e96\u5f62"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u30b0\u30e9\u30b9\u30de\u30f3\u591a\u69d8\u4f53"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u7b49\u8cea\u7a7a\u9593"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "Little wood-Rithardson\u76e4"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "nil potent linear trans formation"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "Jordan canonical form"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "grassmann variety"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "Little wood-Richardson tableaux"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "nil potent matrix"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "Schubert cell"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "homogeneous space"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "singular set"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "Littlewood-Richardson\u76e4"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "Scnubert\u591a\u69d8\u4f53"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u3079\u304d\u96f6\u884c\u5217"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u30b3\u30af\u30bb\u30bf\u30fc\u7fa4"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u30d7\u30d5\u30a1\u30c3\u30d5\u30a3\u30a2\u30f3"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u30d7\u30ea\u30e5\u30c3\u30ab\u30fc\u57cb\u8fbc"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u4ea4\u4ee3\u7fa4"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u53cc\u5bfe\u591a\u69d8\u4f53"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u7279\u7570\u70b9\u96c6\u5408"}]}, "item_1617186626617": {"attribute_name": "Description", "attribute_value_mlt": [{"subitem_description": "\u79d1\u7814\u8cbb\u756a\u53f7: 14540035", "subitem_description_type": "Other"}, {"subitem_description": "\u5e73\u621014\u5e74\u5ea6\uff5e\u5e73\u621015\u5e74\u5ea6\u79d1\u5b66\u7814\u7a76\u8cbb\u88dc\u52a9\u91d1(\u57fa\u76e4\u7814\u7a76(C)(2))\u7814\u7a76\u6210\u679c\u5831\u544a\u66f8", "subitem_description_type": "Other"}, {"subitem_description": "\u7814\u7a76\u6982\u8981\uff08\u548c\u6587\uff09\uff1a\u5e73\u621014\u5e74\u5ea6:A partial order on the symmetric groups defined by 3-cycles (3-\u30b5\u30a4\u30af\u30eb\u3067\u5b9a\u7fa9\u3055\u308c\u308b\u5bfe\u79f0\u7fa4\u306e\u534a\u9806\u5e8f):n\u6b21\u5bfe\u79f0\u7fa4\u306e\u5143\u306f\u81ea\u7136\u306a\u7a4d\u8868\u793a(\u6700\u77ed\u8868\u793a)\u3092\u3082\u3064\u304c\u3001\u4ea4\u4ee3\u7fa4\u306b\u5bfe\u3057\u3066\u3053\u306e\u4e8b\u5b9f\u306b\u76f8\u5f53\u3059\u308b\u3082\u306e\u304c\u306a\u3044\u304b\u3001\u3064\u307e\u308a\u3001n\u6b21\u4ea4\u4ee3\u7fa4\u306e\u4e00\u822c\u306e\u5143\u306e\u3001n-2\u500b\u306e3-\u30b5\u30a4\u30af\u30eb(123),...,(n-2,n-1,n)\u306b\u3088\u308b\u81ea\u7136\u306a\u7a4d\u8868\u793a\u306f\u4f55\u304b\u30021\u3064\u306e\u8a66\u307f\u3068\u3057\u3066\u3001\u5bfe\u79f0\u7fa4\u306e Bruhat order\u3068\u306f\u7570\u306a\u308b\u534a\u9806\u5e8f\u3092\u65b0\u305f\u306b\u5b9a\u7fa9\u3057\u305f(\u3053\u308c\u306f\u4e00\u822c\u306e\u30b3\u30af\u30bb\u30bf\u30fc\u7fa4\u3067\u3082\u540c\u3058\u3088\u3046\u306b\u5b9a\u7fa9\u53ef\u80fd)\u3002\u4ea4\u4ee3\u7fa4\u306e\u5143\u304c\u3053\u306e\u534a\u9806\u5e8f\u3067\u3001\u6700\u77ed\u8868\u793a\u304c\u53ef\u80fd\u3067\u3042\u308b\u305f\u3081\u306e1\u3064\u306e\u5341\u5206\u6761\u4ef6\u3092\u5f97\u305f\u3002\u307e\u305f\u3001\u6700\u77ed\u8868\u793a\u304c\u4e0d\u53ef\u80fd\u306a\u5143\u306f\u300c\u6b86\u3069\u4e0d\u5206\u89e3\u306a\u5143\u300d\u304b\u3089\u5f97\u3089\u308c\u308b\u3053\u3068\u3092\u793a\u3057\u30018\u6b21\u4ee5\u4e0b\u306e\u300c\u6b86\u3069\u4e0d\u5206\u89e3\u306a\u5143\u300d\u3092\u3059\u3079\u3066\u5177\u4f53\u7684\u306b\u69cb\u6210\u3057\u305f\u3002\u5e73\u621015\u5e74\u5ea6:The varieties of subspaces stable under a nilpotent transformation (\u3079\u304d\u96f6\u5909\u63db\u3067\u5b89\u5b9a\u306a\u90e8\u5206\u7a7a\u9593\u306e\u306a\u3059\u591a\u69d8\u4f53):\u30d9\u30af\u30c8\u30eb\u7a7a\u9593\u306e\u3079\u304d\u96f6\u5909\u63dbf : V -\u003e V\u306eJordan\u6a19\u6e96\u5f62\u306e\u30bf\u30a4\u30d7\u3092type V = a\u3068\u66f8\u304f\u30022\u3064\u306e\u5206\u5272b\u3068c\u306b\u5bfe\u3057\u3066\u3001\u96c6\u5408S(a, b, c)={W\u003cV ; f(W)\u003cW, type W=b, typeV/W=c}\u306f\u3001V\u306e|b|\u6b21\u5143\u90e8\u5206\u7a7a\u9593\u306e\u306a\u3059\u30b0\u30e9\u30b9\u30de\u30f3\u591a\u69d8\u4f53G(|b|,V)\u306e\u4e2d\u3067\u5c40\u6240\u9589\u96c6\u5408\u306b\u306a\u308b\u3002S(a, b, c)\u306eG(|b|,V)\u5185\u3067\u306eZariski\u9589\u5305X(a, b, c)\u306e\u7279\u7570\u70b9\u96c6\u5408\u306b\u3064\u3044\u3066\u4ee5\u4e0b\u306e\u7d50\u679c\u3092\u5f97\u305f\u3002(1)S(a, b, c)\u306f\u975e\u7279\u7570\u3002(2)X(a, b, c)\u306f\u3001\u5206\u5272\u306e\u3042\u308b\u534a\u9806\u5e8f\u003c\u306b\u95a2\u3057\u3066b\u0027\u003cb, c\u0027\u003cc\u306a\u308b\u3082\u306e\u306b\u95a2\u3059\u308bS(a, b\u0027,c\u0027)\u306e\u548c\u96c6\u5408\u3002(3)generic vectors\u3092\u5b9a\u7fa9\u3057\u305f\u3002\u3053\u308c\u306b\u3088\u308aX(a, b, c)\u306e\u751f\u6210\u70b9\u304c\u5177\u4f53\u7684\u306b\u69cb\u6210\u3067\u304d\u3066\u3001b\u306e\u5217\u306e\u5927\u304d\u3055\u304c\u5c0f\u3055\u3044\u3068\u304d\u306fX(a, b, c)\u306e\u5b9a\u7fa9\u65b9\u7a0b\u5f0f\u304c\u5bb9\u6613\u306b\u8a18\u8ff0\u3067\u304d\u308b\u3002(4)\u4f59\u6b21\u51432\u306e\u548c\u308b\u7279\u7570\u70b9\u96c6\u5408\u306e\u5b9a\u7fa9\u65b9\u7a0b\u5f0f\u3092\u8a18\u8ff0\u3057\u305f\u3002", "subitem_description_type": "Other"}, {"subitem_description": "\u6982\u8981\uff08\u82f1\u6587\uff09\uff1a[A partila order on the symmetric groups defined by 3-cycles] We define a partial order on the symmetric group S_n of degree n by x\u3010less than or equal\u3011y iff y=a_1\u3010triple bond\u3011a_kx with i(y)=i(x)+2k where a_1,\u3010triple bond\u3011, a_k are 3-cycles of increasing or decreasing consecutive three letters and i(*) is the nmber of inversions of the element * of S_n, on the analogy of the weak Bruhat Order. Whether an even parmutaion is comparable to the identity or not in this ordering is considered. It is shown that all of the even permutations of degree n which map 1 to n or n-1 are comparable to the identity. [The varieties of subspaces stable under a nilpotent transformation] Let f : V \u2192 V be a nilpotent linear transformation of a vector space V of type V=\u03bb,i.e. the size of Jordan blocks \u03bb_1\u3010greater than or equal\u3011\u03bb_2\u3010greater than or equal\u3011\u3010triple bond\u3011\u3010greater than or equal\u3011\u03bb_\u03b9. For an f-stable subspace W of V,i.e. f(W) \u2282 W, the types of W and V/W are those of the maps f|w : W \u2192 W and fv/w : V/W \u2192 V/W induced by f, respectively. For partitions \u03bd and \u03bc we investigate the set S(\u03bb,\u03bd,\u03bc)={W \u2282 V;f(W) \u2282 W,type W=\u03bd,type V/W=\u03bc} and the singular locus of the Zariski closure X(\u03bb,\u03bd,\u03bc) of S(\u03bb,\u03bd,\u03bc) in the grassmaniann of subspaces of V of dimension |\u03bd|. We show that S(\u03bb,\u03bd,\u03bc) is nonsingular and its connected components are rational varieties ; generic vectors are introduced, which define the generic points of the irreducible components of X(\u03bb,\u03bd,\u03bc) whose Plucker coordinates are fairly simple to express their defining equations. We describe explicitly the coordinate ring of an affine openset of X(\u03bb,(d),\u03bc) with the singular locus of codimension two.", "subitem_description_type": "Other"}, {"subitem_description": "\u672a\u516c\u958b\uff1aP.5\u4ee5\u964d(\u5225\u5237\u8ad6\u6587\u306e\u305f\u3081)", "subitem_description_type": "Other"}, {"subitem_description": "\u7814\u7a76\u5831\u544a\u66f8", "subitem_description_type": "Other"}]}, "item_1617186643794": {"attribute_name": "Publisher", "attribute_value_mlt": [{"subitem_1522300295150": "ja", "subitem_1522300316516": "\u524d\u7530\u9ad8\u58eb"}]}, "item_1617186702042": {"attribute_name": "Language", "attribute_value_mlt": [{"subitem_1551255818386": "jpn"}]}, "item_1617186783814": {"attribute_name": "Identifier", "attribute_value_mlt": [{"subitem_identifier_type": "HDL", "subitem_identifier_uri": "http://hdl.handle.net/20.500.12000/18187"}]}, "item_1617186920753": {"attribute_name": "Source Identifier", "attribute_value_mlt": [{"subitem_1522646500366": "NCID", "subitem_1522646572813": "BA74732541"}]}, "item_1617258105262": {"attribute_name": "Resource Type", "attribute_value_mlt": [{"resourcetype": "research report", "resourceuri": "http://purl.org/coar/resource_type/c_18ws"}]}, "item_1617265215918": {"attribute_name": "Version Type", "attribute_value_mlt": [{"subitem_1522305645492": "AM", "subitem_1600292170262": "http://purl.org/coar/version/c_ab4af688f83e57aa"}]}, "item_1617605131499": {"attribute_name": "File", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "download_preview_message": "", "file_order": 0, "filename": "14540035.pdf", "future_date_message": "", "is_thumbnail": false, "mimetype": "", "size": 0, "url": {"objectType": "fulltext", "url": "https://u-ryukyu.repo.nii.ac.jp/record/2005660/files/14540035.pdf"}, "version_id": "3275feeb-d33e-43f5-b48f-06690e021ac1"}]}, "item_title": "Kempf\u8907\u4f53\u306e\u8d85\u5224\u5225\u5f0f\u3078\u306e\u5fdc\u7528", "item_type_id": "15", "owner": "1", "path": ["1642838403123", "1642838406414"], "permalink_uri": "http://hdl.handle.net/20.500.12000/18187", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2010-10-05"}, "publish_date": "2010-10-05", "publish_status": "0", "recid": "2005660", "relation": {}, "relation_version_is_last": true, "title": ["Kempf\u8907\u4f53\u306e\u8d85\u5224\u5225\u5f0f\u3078\u306e\u5fdc\u7528"], "weko_shared_id": -1}
http://hdl.handle.net/20.500.12000/18187
http://hdl.handle.net/20.500.12000/18187