ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "8fa45c6f-32c1-40df-b2fc-3cfd0d465a64"}, "_deposit": {"id": "2007912", "owners": [1], "pid": {"revision_id": 0, "type": "depid", "value": "2007912"}, "status": "published"}, "_oai": {"id": "oai:u-ryukyu.repo.nii.ac.jp:02007912", "sets": ["1642837639270", "1642838406414"]}, "author_link": [], "item_1617186331708": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "WHICH INSCRIBED SPHERE OF PYRAMIDS IS MAXIMAL?", "subitem_1551255648112": "en"}]}, "item_1617186419668": {"attribute_name": "Creator", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Kamiyama, Yasuhiko", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "\u795e\u5c71, \u9756\u5f66", "creatorNameLang": "ja"}]}]}, "item_1617186476635": {"attribute_name": "Access Rights", "attribute_value_mlt": [{"subitem_1522299639480": "open access", "subitem_1600958577026": "http://purl.org/coar/access_right/c_abf2"}]}, "item_1617186626617": {"attribute_name": "Description", "attribute_value_mlt": [{"subitem_description": "Consider the following question: In a circular cone, with bus line having length 1, the inscribed sphere is to be maximal. How much is the radius of the base circle? It is easy to see that the answer is (\u221a\u003c5\u003e-1)/2, which is interesting because this is the reciprocal of the golden section. In this paper, we generalize the question to the case that the base circle is generalized to regular polygons.", "subitem_description_type": "Other"}, {"subitem_description": "\u7d00\u8981\u8ad6\u6587", "subitem_description_type": "Other"}]}, "item_1617186643794": {"attribute_name": "Publisher", "attribute_value_mlt": [{"subitem_1522300295150": "en", "subitem_1522300316516": "Department of Mathematical Sciences, Faculty of Science, University of the Ryukyus"}, {"subitem_1522300295150": "ja", "subitem_1522300316516": "\u7409\u7403\u5927\u5b66\u7406\u5b66\u90e8\u6570\u7406\u79d1\u5b66\u6559\u5ba4"}]}, "item_1617186702042": {"attribute_name": "Language", "attribute_value_mlt": [{"subitem_1551255818386": "eng"}]}, "item_1617186783814": {"attribute_name": "Identifier", "attribute_value_mlt": [{"subitem_identifier_type": "HDL", "subitem_identifier_uri": "http://hdl.handle.net/20.500.12000/30835"}]}, "item_1617186920753": {"attribute_name": "Source Identifier", "attribute_value_mlt": [{"subitem_1522646500366": "ISSN", "subitem_1522646572813": "1344-008X"}, {"subitem_1522646500366": "NCID", "subitem_1522646572813": "AA10779580"}]}, "item_1617186941041": {"attribute_name": "Source Title", "attribute_value_mlt": [{"subitem_1522650068558": "en", "subitem_1522650091861": "Ryukyu mathematical journal"}]}, "item_1617187056579": {"attribute_name": "Bibliographic Information", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2014-12-26", "bibliographicIssueDateType": "Issued"}, "bibliographicPageEnd": "8", "bibliographicPageStart": "1", "bibliographicVolumeNumber": "27"}]}, "item_1617258105262": {"attribute_name": "Resource Type", "attribute_value_mlt": [{"resourcetype": "departmental bulletin paper", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_1617265215918": {"attribute_name": "Version Type", "attribute_value_mlt": [{"subitem_1522305645492": "VoR", "subitem_1600292170262": "http://purl.org/coar/version/c_970fb48d4fbd8a85"}]}, "item_1617605131499": {"attribute_name": "File", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "download_preview_message": "", "file_order": 0, "filename": "Vol27p001.pdf", "future_date_message": "", "is_thumbnail": false, "mimetype": "", "size": 0, "url": {"objectType": "fulltext", "url": "https://u-ryukyu.repo.nii.ac.jp/record/2007912/files/Vol27p001.pdf"}, "version_id": "56e92aa1-2135-4e58-8ad4-2629f7af9a7b"}]}, "item_title": "WHICH INSCRIBED SPHERE OF PYRAMIDS IS MAXIMAL?", "item_type_id": "15", "owner": "1", "path": ["1642837639270", "1642838406414"], "permalink_uri": "http://hdl.handle.net/20.500.12000/30835", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2015-05-14"}, "publish_date": "2015-05-14", "publish_status": "0", "recid": "2007912", "relation": {}, "relation_version_is_last": true, "title": ["WHICH INSCRIBED SPHERE OF PYRAMIDS IS MAXIMAL?"], "weko_shared_id": -1}
  1. 紀要論文
  2. Ryukyu mathematical journal
  3. 27巻
  1. 部局別インデックス
  2. 理学部

WHICH INSCRIBED SPHERE OF PYRAMIDS IS MAXIMAL?

http://hdl.handle.net/20.500.12000/30835
http://hdl.handle.net/20.500.12000/30835
f9f039be-9b5f-4b81-a33c-2a323793f515
名前 / ファイル ライセンス アクション
Vol27p001.pdf Vol27p001.pdf
Item type デフォルトアイテムタイプ(フル)(1)
公開日 2015-05-14
タイトル
タイトル WHICH INSCRIBED SPHERE OF PYRAMIDS IS MAXIMAL?
言語 en
作成者 Kamiyama, Yasuhiko

× Kamiyama, Yasuhiko

en Kamiyama, Yasuhiko

神山, 靖彦

× 神山, 靖彦

ja 神山, 靖彦

アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
内容記述
内容記述タイプ Other
内容記述 Consider the following question: In a circular cone, with bus line having length 1, the inscribed sphere is to be maximal. How much is the radius of the base circle? It is easy to see that the answer is (√<5>-1)/2, which is interesting because this is the reciprocal of the golden section. In this paper, we generalize the question to the case that the base circle is generalized to regular polygons.
内容記述タイプ Other
内容記述 紀要論文
出版者
言語 ja
出版者 琉球大学理学部数理科学教室
言語
言語 eng
資源タイプ
資源タイプ departmental bulletin paper
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
識別子
識別子 http://hdl.handle.net/20.500.12000/30835
識別子タイプ HDL
収録物識別子
収録物識別子タイプ ISSN
収録物識別子 1344-008X
収録物識別子タイプ NCID
収録物識別子 AA10779580
収録物名
言語 en
収録物名 Ryukyu mathematical journal
書誌情報
巻 27, p. 1-8, 発行日 2014-12-26
戻る
0
views
See details
Views

Versions

Ver.1 2022-01-28 04:37:06.182050
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON

確認


Powered by WEKO3


Powered by WEKO3