{"_buckets": {"deposit": "81df24d3-f131-47e2-8bf3-8955cf0eaae2"}, "_deposit": {"id": "2004426", "owners": [1], "pid": {"revision_id": 0, "type": "depid", "value": "2004426"}, "status": "published"}, "_oai": {"id": "oai:u-ryukyu.repo.nii.ac.jp:02004426", "sets": ["1642838403123", "1642838405037"]}, "author_link": [], "item_1617186331708": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "\u6709\u9650\u30e2\u30ce\u30c9\u30ed\u30df\u30fc\u7fa4\u3092\u3082\u3064\u8d85\u5e7e\u4f55\u5fae\u5206\u65b9\u7a0b\u5f0f\u306e Schwarz map", "subitem_1551255648112": "ja"}, {"subitem_1551255647225": "Schwarz maps of hypergeometric differential equations with finite monodromy groups", "subitem_1551255648112": "en"}]}, "item_1617186419668": {"attribute_name": "Creator", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "\u52a0\u85e4, \u6e80\u751f", "creatorNameLang": "ja"}]}, {"creatorNames": [{"creatorName": "Kato, Mitsuo", "creatorNameLang": "en"}]}]}, "item_1617186476635": {"attribute_name": "Access Rights", "attribute_value_mlt": [{"subitem_1522299639480": "open access", "subitem_1600958577026": "http://purl.org/coar/access_right/c_abf2"}]}, "item_1617186609386": {"attribute_name": "Subject", "attribute_value_mlt": [{"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "hypergeometric function"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "monodromy group"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "Schwarz map"}]}, "item_1617186626617": {"attribute_name": "Description", "attribute_value_mlt": [{"subitem_description": "\u79d1\u7814\u8cbb\u756a\u53f7: 12640031", "subitem_description_type": "Other"}, {"subitem_description": "\u5e73\u621012\u5e74\u5ea6\uff5e\u5e73\u621013\u5e74\u5ea6 \u79d1\u5b66\u7814\u7a76\u8cbb\u88dc\u52a9\u91d1\u57fa\u76e4\u7814\u7a76(C)(2)\u7814\u7a76\u6210\u679c\u5831\u544a\u66f8 / \u7814\u7a76\u6982\u8981 : Gauss\u306e\u8d85\u5e7e\u4f55\u5fae\u5206\u65b9\u7a0b\u5f0f\u306e\u62e1\u5f35\u3068\u3057\u3066\u4e00\u822c\u578b\u3001_\u003cn+1\u003eF_n, Appell\u578bF_1,F_2,F_3,F_4,(k,n)\u578b\u8d85\u5e7e\u4f55\u5fae\u5206\u65b9\u7a0b\u5f0f\u7b49\u304c\u3042\u308b\u3002\u672c\u7814\u7a76\u3067\u306f,\u4e3b\u306bAppell F_2\u3068imprimitive\u306a_\u003cn+1\u003eF_n\u306b\u5bfe\u3057\u3066\u4ee5\u4e0b\u306e\u7814\u7a76\u3092\u884c\u3063\u305f.1)\u6709\u9650\u65e2\u7d04\u306a\u30e2\u30ce\u30c9\u30ed\u30df\u30fc\u7fa4\u3092\u3082\u3064Appell F_2\u3092\u6c7a\u5b9a\u3057\u305f.\u305d\u306e\u6761\u4ef6\u306fF_2\u304c\u3082\u30645\u500b\u306e\u30d1\u30e9\u30e1\u30fc\u30bf\u306b\u3088\u3063\u3066\u8a00\u3044\u8868\u3055\u308c,\u672c\u8cea\u7684\u306b6\u7a2e\u985e\u306b\u5206\u985e\u3055\u308c\u308b.\u305d\u306e\u3044\u305a\u308c\u306e\u5834\u5408\u3082\u30e2\u30ce\u30c9\u30ed\u30df\u30fc\u7fa4\u306f\u7c21\u5358\u306a\u53ef\u63db\u7fa4\u3068unitary reflection group\u3068\u306e\u534a\u76f4\u7a4d\u306b\u306a\u3063\u3066\u3044\u308b.\u305d\u3053\u306b\u73fe\u308c\u308breflection group\u306fShephard-Todd\u306e\u5206\u985e\u8868\u306eimprimitive\u306aG(2,2,4)\u3068primitive\u306aNo.28,30,32\u306e\u7fa4\u3067\u3042\u308b. No.30\u306e\u7fa4\u306f2\u7a2e\u306e\u30e2\u30ce\u30c9\u30ed\u30df\u30fc\u7fa4\u306b\u73fe\u308c\u308b\u304c,\u305d\u3053\u3067\u306e\u53ef\u63db\u7fa4\u304c\u7570\u306a\u3063\u3066\u3044\u308b.6\u7a2e\u306e\u30e2\u30ce\u30c9\u30ed\u30df\u30fc\u7fa4\u306e\u3046\u30615\u3064\u306f4\u3064\u306e1\u6b21\u72ec\u7acb\u306a\u89e3\u306e\u9593\u306b2\u6b21\u95a2\u4fc2\u5f0f\u304c\u5b58\u5728\u3059\u308b.\u6b8b\u308a\u306e1\u3064,No.32\u306eunitary group\u3092\u3075\u304f\u3080\u30e2\u30ce\u30c9\u30ed\u30df\u30fc\u7fa4\u3092\u6301\u3064\u5fae\u5206\u65b9\u7a0b\u5f0f\u306eSchwarz map\u306e\u50cf\u306fP^3\u5185\u306e90\u6b21\u66f2\u9762\u3068\u306a\u308b\u30022)Imprimitive\u306a\u6709\u9650\u30e2\u30ce\u30c9\u30ed\u30df\u30fc\u7fa4\u3092\u3082\u3064\u3001_nF_\u003cn-1\u003e\u306e Schwarz map\u306emap\u306e\u50cfC\u306f\u65b9\u7a0b\u5f0fy^\u003cmn\u003e+xy^\u003cmq\u003e-1=0\u306e1\u6b21\u72ec\u7acb\u306an\u500b\u306e\u89e3\u306e\u6bd4\u3067\u6c7a\u307e\u308bP^\u003cn- 1\u003e\u5185\u306e\u70b9\u306e(x\u3092\u52d5\u304b\u3057\u305f\u3068\u304d\u306e)\u8ecc\u8de1\u3068\u306a\u308b.\u4e0a\u306e3\u9805n\u6b21\u65b9\u7a0b\u5f0f\u306e\u89e3\u306fx=0\u3067\u6b63\u5247\u306a\u95a2\u6570\u3067\u4e00\u822c\u578b2\u9805\u95a2\u6570\u3068\u3082\u547c\u3070\u308c\u3001\u672c\u7814\u7a76\u306b\u91cd\u8981\u306a\u5f79\u5272\u3092\u679c\u3059\u3002\u7279\u306b_3F_2\u3068y^3+xy-1=0\u306e\u95a2\u4fc2\u3092\u8003\u5bdf\u3059\u308b\u3053\u3068\u306b\u3088\u308a\u30013\u6b21\u65b9\u7a0b\u5f0f\u306e\u30ab\u30eb\u30c0\u30ce\u306e\u516c\u5f0f\u306e\u5225\u8a3c\u660e\u304c\u5f97\u3089\u308c\u308b\u3002", "subitem_description_type": "Other"}, {"subitem_description": "Appell\u0027s hypergeometric function F_2(a; b, b\u0027; c, c\u0027; x, y) =\u03a3^^\u221e_\u003cm,n=0\u003e((a,m+n)(b,m)(b\u0027,n))/((c,m)(c\u0027,n)(1,m)(1,n))x^my^n, where(a,n) = \u0393(a+n)/\u0393(a), satisfies a system E_2(a;b,b\u0027;c,c\u0027) of differential equations on the (x,y)-space X (\u3010similar or equal\u3011P^2). 1. I tabulated all the systems of parameters (a;b,b\u0027;c,c\u0027) into six classes such that each E_2(a;b,b\u0027;c,c\u0027) has a finite irreducible monodromy group. These monodromy groups have reflection subgroups whose Shephard-Todd numbers are 2,28,30 and 32. 2. The system E: = E_2(-1/\u003c12\u003e;1/6;1/\u003c12\u003e;1/3;1/2) has the biggest finite irreducible monodromy group G of order 12\u30fb25920. A Schwarz map s_E of E defined by the ratio of four linearly independent solutions of E is a 25920-valued map of X-Sing(E) into P^3, where Sing(E) denotes the singular locus of E. The closure S of the image of s_E turns out to be an irreducible hypersurface of degree 90 on which G acts.", "subitem_description_type": "Other"}, {"subitem_description": "\u7814\u7a76\u5831\u544a\u66f8", "subitem_description_type": "Other"}]}, "item_1617186643794": {"attribute_name": "Publisher", "attribute_value_mlt": [{"subitem_1522300295150": "ja", "subitem_1522300316516": "\u52a0\u85e4\u6e80\u751f"}]}, "item_1617186702042": {"attribute_name": "Language", "attribute_value_mlt": [{"subitem_1551255818386": "eng"}]}, "item_1617186783814": {"attribute_name": "Identifier", "attribute_value_mlt": [{"subitem_identifier_type": "HDL", "subitem_identifier_uri": "http://hdl.handle.net/20.500.12000/8947"}]}, "item_1617186920753": {"attribute_name": "Source Identifier", "attribute_value_mlt": [{"subitem_1522646500366": "NCID", "subitem_1522646572813": "BA6427974X"}]}, "item_1617258105262": {"attribute_name": "Resource Type", "attribute_value_mlt": [{"resourcetype": "research report", "resourceuri": "http://purl.org/coar/resource_type/c_18ws"}]}, "item_1617265215918": {"attribute_name": "Version Type", "attribute_value_mlt": [{"subitem_1522305645492": "VoR", "subitem_1600292170262": "http://purl.org/coar/version/c_970fb48d4fbd8a85"}]}, "item_1617605131499": {"attribute_name": "File", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "download_preview_message": "", "file_order": 0, "filename": "kato_m01-5.pdf", "future_date_message": "", "is_thumbnail": false, "mimetype": "", "size": 0, "url": {"objectType": "fulltext", "url": "https://u-ryukyu.repo.nii.ac.jp/record/2004426/files/kato_m01-5.pdf"}, "version_id": "6e5451cf-c3ef-45f9-835d-a1997ffd701b"}, {"accessrole": "open_access", "download_preview_message": "", "file_order": 1, "filename": "kato_m01-4.pdf", "future_date_message": "", "is_thumbnail": false, "mimetype": "", "size": 0, "url": {"objectType": "fulltext", "url": "https://u-ryukyu.repo.nii.ac.jp/record/2004426/files/kato_m01-4.pdf"}, "version_id": "b6a2296f-0cb7-4d45-8caf-a98c26f03792"}, {"accessrole": "open_access", "download_preview_message": "", "file_order": 2, "filename": "kato_m01-3.pdf", "future_date_message": "", "is_thumbnail": false, "mimetype": "", "size": 0, "url": {"objectType": "fulltext", "url": "https://u-ryukyu.repo.nii.ac.jp/record/2004426/files/kato_m01-3.pdf"}, "version_id": "faa09ac9-9795-42c6-bdde-2b0aed8004f2"}, {"accessrole": "open_access", "download_preview_message": "", "file_order": 3, "filename": "kato_m01-2.pdf", "future_date_message": "", "is_thumbnail": false, "mimetype": "", "size": 0, "url": {"objectType": "fulltext", "url": "https://u-ryukyu.repo.nii.ac.jp/record/2004426/files/kato_m01-2.pdf"}, "version_id": "3e5d9315-45ac-421b-9f63-b57393dcd39f"}, {"accessrole": "open_access", "download_preview_message": "", "file_order": 4, "filename": "kato_m01-1.pdf", "future_date_message": "", "is_thumbnail": false, "mimetype": "", "size": 0, "url": {"objectType": "fulltext", "url": "https://u-ryukyu.repo.nii.ac.jp/record/2004426/files/kato_m01-1.pdf"}, "version_id": "60d6acba-f278-4e39-8306-163a5be663cb"}]}, "item_title": "\u6709\u9650\u30e2\u30ce\u30c9\u30ed\u30df\u30fc\u7fa4\u3092\u3082\u3064\u8d85\u5e7e\u4f55\u5fae\u5206\u65b9\u7a0b\u5f0f\u306e Schwarz map", "item_type_id": "15", "owner": "1", "path": ["1642838403123", "1642838405037"], "permalink_uri": "http://hdl.handle.net/20.500.12000/8947", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2009-02-27"}, "publish_date": "2009-02-27", "publish_status": "0", "recid": "2004426", "relation": {}, "relation_version_is_last": true, "title": ["\u6709\u9650\u30e2\u30ce\u30c9\u30ed\u30df\u30fc\u7fa4\u3092\u3082\u3064\u8d85\u5e7e\u4f55\u5fae\u5206\u65b9\u7a0b\u5f0f\u306e Schwarz map"], "weko_shared_id": -1}
有限モノドロミー群をもつ超幾何微分方程式の Schwarz map
http://hdl.handle.net/20.500.12000/8947
http://hdl.handle.net/20.500.12000/8947